AWGE-ESPCA: An edge sparse PCA model based on adaptive noise elimination regularization and weighted gene network for Hermetia illucens genomic data analysis

伊卢森斯爱马仕 计算生物学 先验与后验 基因预测 计算机科学 基因组 生物 基因 遗传学 生态学 认识论 哲学 幼虫
作者
Rui Miao,Haoyang Yu,Bing-Jie Zhong,Hongxia Sun,Qiang Xia
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (2): e1012773-e1012773
标识
DOI:10.1371/journal.pcbi.1012773
摘要

Hermetia illucens is an important insect resource. Studies have shown that exploring the effects of Cu 2+ -stressed on the growth and development of the Hermetia illucens genome holds significant scientific importance. There are three major challenges in the current studies of Hermetia illucens genomic data analysis: firstly, the lack of available genomic data which limits researchers in Hermetia illucens genomic data analysis. Secondly, to the best of our knowledge, there are no Artificial Intelligence (AI) feature selection models designed specifically for Hermetia illucens genome. Unlike human genomic data, noise in Hermetia illucens data is a more serious problem. Third, how to choose those genes located in the pathway enrichment region. Existing models assume that each gene probe has the same priori weight. However, researchers usually pay more attention to gene probes which are in the pathway enrichment region. Based on the above challenges, we initially construct experiments and establish a new Cu 2+ -stressed Hermetia illucens growth genome dataset. Subsequently, we propose AWGE-ESPCA: an edge Sparse PCA model based on adaptive noise elimination regularization and weighted gene network. The AWGE-ESPCA model innovatively proposes an adaptive noise elimination regularization method, effectively addressing the noise challenge in Hermetia illucens genomic data. We also integrate the known gene-pathway quantitative information into the Sparse PCA(SPCA) framework as a priori knowledge, which allows the model to filter out the gene probes in pathway-rich regions as much as possible. Ultimately, this study conducts five independent experiments and compared four latest Sparse PCA models as well as representative supervised and unsupervised baseline models to validate the model performance. The experimental results demonstrate the superior pathway and gene selection capabilities of the AWGE-ESPCA model. Ablation experiments validate the role of the adaptive regularizer and network weighting module. To summarize, this paper presents an innovative unsupervised model for Hermetia illucens genome analysis, which can effectively help researchers identify potential biomarkers. In addition, we also provide a working AWGE - ESPCA model code in the address: https://github.com/yhyresearcher/AWGE_ESPCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LCC发布了新的文献求助10
刚刚
小阿飞完成签到,获得积分10
刚刚
水牛发布了新的文献求助10
刚刚
汪爷爷发布了新的文献求助10
刚刚
37完成签到 ,获得积分10
1秒前
千早爱音完成签到 ,获得积分10
1秒前
玄学大哥完成签到,获得积分10
1秒前
BioGO发布了新的文献求助10
2秒前
深情安青应助su采纳,获得10
3秒前
3秒前
星晴遇见花海完成签到 ,获得积分10
3秒前
欢乐佩奇完成签到,获得积分10
3秒前
zxc167完成签到,获得积分10
3秒前
平常含巧完成签到,获得积分10
3秒前
fox完成签到 ,获得积分10
4秒前
轻松绮兰完成签到,获得积分10
4秒前
禾风完成签到,获得积分10
4秒前
崔洪瑞完成签到,获得积分10
5秒前
羊羊完成签到,获得积分10
5秒前
tao完成签到 ,获得积分10
6秒前
零知识完成签到 ,获得积分10
6秒前
TheSail发布了新的文献求助10
7秒前
7秒前
pcr163应助hetao286采纳,获得100
7秒前
8秒前
薛人英完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
vv的平行宇宙完成签到,获得积分10
10秒前
机密塔完成签到,获得积分10
10秒前
曾小莹完成签到,获得积分10
10秒前
10秒前
11秒前
hua完成签到,获得积分10
11秒前
斯文冷亦完成签到 ,获得积分10
12秒前
努力退休小博士完成签到 ,获得积分10
12秒前
popo完成签到,获得积分10
12秒前
changyongcheng完成签到 ,获得积分10
12秒前
hhhhhhan616完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044