已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AWGE-ESPCA: An edge sparse PCA model based on adaptive noise elimination regularization and weighted gene network for Hermetia illucens genomic data analysis

伊卢森斯爱马仕 计算生物学 先验与后验 基因预测 计算机科学 基因组 生物 基因 遗传学 生态学 幼虫 哲学 认识论
作者
Rui Miao,Haoyang Yu,Bing-Jie Zhong,Hongxia Sun,Qiang Xia
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (2): e1012773-e1012773
标识
DOI:10.1371/journal.pcbi.1012773
摘要

Hermetia illucens is an important insect resource. Studies have shown that exploring the effects of Cu 2+ -stressed on the growth and development of the Hermetia illucens genome holds significant scientific importance. There are three major challenges in the current studies of Hermetia illucens genomic data analysis: firstly, the lack of available genomic data which limits researchers in Hermetia illucens genomic data analysis. Secondly, to the best of our knowledge, there are no Artificial Intelligence (AI) feature selection models designed specifically for Hermetia illucens genome. Unlike human genomic data, noise in Hermetia illucens data is a more serious problem. Third, how to choose those genes located in the pathway enrichment region. Existing models assume that each gene probe has the same priori weight. However, researchers usually pay more attention to gene probes which are in the pathway enrichment region. Based on the above challenges, we initially construct experiments and establish a new Cu 2+ -stressed Hermetia illucens growth genome dataset. Subsequently, we propose AWGE-ESPCA: an edge Sparse PCA model based on adaptive noise elimination regularization and weighted gene network. The AWGE-ESPCA model innovatively proposes an adaptive noise elimination regularization method, effectively addressing the noise challenge in Hermetia illucens genomic data. We also integrate the known gene-pathway quantitative information into the Sparse PCA(SPCA) framework as a priori knowledge, which allows the model to filter out the gene probes in pathway-rich regions as much as possible. Ultimately, this study conducts five independent experiments and compared four latest Sparse PCA models as well as representative supervised and unsupervised baseline models to validate the model performance. The experimental results demonstrate the superior pathway and gene selection capabilities of the AWGE-ESPCA model. Ablation experiments validate the role of the adaptive regularizer and network weighting module. To summarize, this paper presents an innovative unsupervised model for Hermetia illucens genome analysis, which can effectively help researchers identify potential biomarkers. In addition, we also provide a working AWGE - ESPCA model code in the address: https://github.com/yhyresearcher/AWGE_ESPCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tangrzh发布了新的文献求助30
2秒前
孤独的送终完成签到,获得积分10
3秒前
黄毛虎完成签到 ,获得积分10
4秒前
握瑾怀瑜完成签到 ,获得积分0
5秒前
咔咔咔完成签到,获得积分10
5秒前
13秒前
严明完成签到,获得积分10
16秒前
17秒前
xiaoliu123关注了科研通微信公众号
18秒前
闹闹发布了新的文献求助10
18秒前
完美世界应助彼呦彼呦采纳,获得10
20秒前
Res_M完成签到,获得积分10
21秒前
23秒前
2220完成签到 ,获得积分10
24秒前
cocolu应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
毛豆应助科研通管家采纳,获得10
24秒前
24秒前
Yifan2024应助科研通管家采纳,获得50
24秒前
毛豆应助科研通管家采纳,获得10
24秒前
今后应助无心的访蕊采纳,获得10
24秒前
毛豆应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
Yifan2024应助科研通管家采纳,获得10
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
bzlsgjdm完成签到 ,获得积分10
25秒前
无花果应助优美的夜柳采纳,获得10
25秒前
子翱完成签到 ,获得积分10
29秒前
shuke完成签到,获得积分10
29秒前
科研冲冲冲完成签到 ,获得积分20
30秒前
朴实映天发布了新的文献求助10
31秒前
jjj完成签到 ,获得积分20
34秒前
闹闹完成签到,获得积分20
34秒前
广东第一深情完成签到,获得积分10
34秒前
许结朱陈完成签到 ,获得积分10
35秒前
xiaolang2004完成签到,获得积分10
35秒前
11128完成签到 ,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459989
求助须知:如何正确求助?哪些是违规求助? 3054340
关于积分的说明 9041428
捐赠科研通 2743531
什么是DOI,文献DOI怎么找? 1504972
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694839