AWGE-ESPCA: An edge sparse PCA model based on adaptive noise elimination regularization and weighted gene network for Hermetia illucens genomic data analysis

伊卢森斯爱马仕 计算生物学 先验与后验 基因预测 计算机科学 基因组 生物 基因 遗传学 生态学 幼虫 哲学 认识论
作者
Rui Miao,Haoyang Yu,Bing-Jie Zhong,Hongxia Sun,Qiang Xia
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (2): e1012773-e1012773
标识
DOI:10.1371/journal.pcbi.1012773
摘要

Hermetia illucens is an important insect resource. Studies have shown that exploring the effects of Cu 2+ -stressed on the growth and development of the Hermetia illucens genome holds significant scientific importance. There are three major challenges in the current studies of Hermetia illucens genomic data analysis: firstly, the lack of available genomic data which limits researchers in Hermetia illucens genomic data analysis. Secondly, to the best of our knowledge, there are no Artificial Intelligence (AI) feature selection models designed specifically for Hermetia illucens genome. Unlike human genomic data, noise in Hermetia illucens data is a more serious problem. Third, how to choose those genes located in the pathway enrichment region. Existing models assume that each gene probe has the same priori weight. However, researchers usually pay more attention to gene probes which are in the pathway enrichment region. Based on the above challenges, we initially construct experiments and establish a new Cu 2+ -stressed Hermetia illucens growth genome dataset. Subsequently, we propose AWGE-ESPCA: an edge Sparse PCA model based on adaptive noise elimination regularization and weighted gene network. The AWGE-ESPCA model innovatively proposes an adaptive noise elimination regularization method, effectively addressing the noise challenge in Hermetia illucens genomic data. We also integrate the known gene-pathway quantitative information into the Sparse PCA(SPCA) framework as a priori knowledge, which allows the model to filter out the gene probes in pathway-rich regions as much as possible. Ultimately, this study conducts five independent experiments and compared four latest Sparse PCA models as well as representative supervised and unsupervised baseline models to validate the model performance. The experimental results demonstrate the superior pathway and gene selection capabilities of the AWGE-ESPCA model. Ablation experiments validate the role of the adaptive regularizer and network weighting module. To summarize, this paper presents an innovative unsupervised model for Hermetia illucens genome analysis, which can effectively help researchers identify potential biomarkers. In addition, we also provide a working AWGE - ESPCA model code in the address: https://github.com/yhyresearcher/AWGE_ESPCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张向向完成签到 ,获得积分10
刚刚
稳重乌冬面完成签到 ,获得积分10
刚刚
嘻嘻我完成签到,获得积分10
3秒前
代桃发布了新的文献求助10
4秒前
4秒前
陈_Ccc完成签到 ,获得积分10
6秒前
wp4455777完成签到,获得积分10
6秒前
醉熏的菲鹰完成签到 ,获得积分10
6秒前
栗子完成签到,获得积分10
12秒前
研友_VZGVzn完成签到,获得积分10
14秒前
Criminology34应助青稞人采纳,获得10
16秒前
代桃完成签到,获得积分10
18秒前
风-FBDD完成签到,获得积分10
18秒前
Asumita完成签到,获得积分10
19秒前
优雅芷波完成签到 ,获得积分10
20秒前
wwww发布了新的文献求助10
22秒前
23秒前
xiaoliu完成签到,获得积分10
24秒前
kyt_vip完成签到,获得积分10
27秒前
甜甜的平蓝完成签到 ,获得积分10
27秒前
小树完成签到 ,获得积分10
29秒前
去小岛上流浪完成签到,获得积分10
30秒前
文与武完成签到 ,获得积分10
35秒前
在水一方应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
38秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
祁灵枫完成签到,获得积分10
40秒前
特图图应助Brave采纳,获得30
41秒前
CWC完成签到,获得积分10
42秒前
优美的莹芝完成签到,获得积分10
44秒前
盛意完成签到,获得积分10
45秒前
46秒前
Orange应助peili采纳,获得10
47秒前
2025顺顺利利完成签到 ,获得积分10
47秒前
Jerry完成签到 ,获得积分10
48秒前
月夕完成签到 ,获得积分10
49秒前
微雨若,,完成签到 ,获得积分10
50秒前
55秒前
执念完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320