Dual-Level Matching with Outlier Filtering for Unsupervised Visible-Infrared Person Re-Identification

人工智能 模式识别(心理学) 计算机科学 匹配(统计) 鉴定(生物学) 离群值 计算机视觉 异常检测 对偶(语法数字) 数学 艺术 统计 植物 文学类 生物
作者
Mang Ye,Zesen Wu,Bo Du
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2025.3541053
摘要

Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality retrieval task due to the large modality gap. While numerous efforts have been devoted to the supervised setting with a large amount of labeled cross-modality correspondences, few studies have tried to mitigate the modality gap by mining cross-modality correspondences in an unsupervised manner. However, existing works failed to capture the intrinsic relations among samples across two modalities, resulting in limited performance outcomes. In this paper, we propose a novel Progressive Graph Matching (PGM) approach to globally model the cross-modality relationships and instance-level affinities. PGM formulates cross-modality correspondence mining as a graph matching procedure, aiming to integrate global information by minimizing global matching costs. Considering that samples in wrong clusters cannot find reliable cross-modality correspondences by PGM, we further introduce a robust Dual-Level Matching (DLM) mechanism, combining the cluster-level PGM and Nearest Instance-Cluster Searching (NICS) with instance-level affinity optimization. Additionally, we design an Outlier Filter Strategy (OFS) to filter out unreliable cross-modality correspondences based on the dual-level relation constraints. To mitigate false accumulation in cross-modal correspondence learning, an Alternate Cross Contrastive Learning (ACCL) module is proposed to alternately adjust the dominated matching, i.e., visible-to-infrared or infrared-to-visible matching. Empirical results demonstrate the superiority of our unsupervised solution, achieving comparable performance with supervised counterparts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
刚刚
田様应助整齐千柳采纳,获得10
刚刚
baochao发布了新的文献求助10
2秒前
3秒前
Ry发布了新的文献求助10
5秒前
6秒前
6秒前
瓦力完成签到 ,获得积分10
7秒前
lvyoyo完成签到,获得积分20
7秒前
8秒前
8秒前
cxqygdn完成签到,获得积分10
8秒前
9秒前
Barry驳回了顾矜应助
9秒前
整齐千柳完成签到,获得积分10
10秒前
huanir99发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
小菜鸡发布了新的文献求助10
13秒前
苏远山爱吃西红柿完成签到 ,获得积分10
14秒前
lee完成签到,获得积分10
15秒前
15秒前
飞飞完成签到,获得积分20
16秒前
huanir99完成签到,获得积分10
16秒前
MADKAI发布了新的文献求助10
17秒前
赘婿应助Tristan采纳,获得10
18秒前
聪明的破茧完成签到,获得积分10
20秒前
穆振云发布了新的文献求助30
20秒前
21秒前
24秒前
orixero应助TWD采纳,获得10
24秒前
26秒前
little佳完成签到,获得积分10
27秒前
图图应助专注的曼容采纳,获得30
28秒前
28秒前
DYL完成签到,获得积分10
29秒前
飘逸问薇发布了新的文献求助10
29秒前
可爱的函函应助小菜鸡采纳,获得10
30秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740661
求助须知:如何正确求助?哪些是违规求助? 3283536
关于积分的说明 10035580
捐赠科研通 3000305
什么是DOI,文献DOI怎么找? 1646450
邀请新用户注册赠送积分活动 783627
科研通“疑难数据库(出版商)”最低求助积分说明 750411