Monitoring immunohistochemical staining variations by artificial intelligence on standardized controls

免疫组织化学 染色 病理 医学 生物
作者
Sven van Kempen,W.J. Gerritsen,Tri Q. Nguyen,Carmen van Dooijeweert,Nikolas Stathonikos,Roel Broekhuizen,L. Peters,P. J. van Diest
出处
期刊:Laboratory Investigation [Elsevier BV]
卷期号:: 104105-104105
标识
DOI:10.1016/j.labinv.2025.104105
摘要

Quality control of immunohistochemistry (IHC) slides is crucial to ascertain accurate patient management. Visual assessment is the most commonly used method to assess the quality of IHC slides from patient samples in daily pathology routines. Control tissues for IHC slides are typically obtained from prior cases containing normal tissues or specific antigen-expressing disease samples, especially tumors. Since such samples eventually run out, and tumors may be heterogeneous, constant expression levels from one control sample to the next cannot be guaranteed. With the increasing availability of standardized cell lines, the diagnostic utility of these cell lines as alternatives to traditional laboratory-derived controls can be explored. Further, stain quality of this cell line material can probably be better monitored with readout methods such as image analysis and artificial intelligence (AI) than with visual readout methods, where accuracy is influenced by the training and experience of the pathologists and technicians. In this study, we present the results of our investigation into AI-measured stain quality of standardized cell lines designed as controls for HER2 and PD-L1 IHC stainings. Using five IHC autostainers from the same manufacturer and type, we quantified cell membrane expression levels of these cell lines after staining using Qualitopix™, an AI algorithm for measuring stain quality control. Over a 24-month period of weekly AI measurements, we observed multiple unexpected variations, particularly in low and medium-expressing cell lines. To further investigate these fluctuations, we assessed both inter-stainer variation and intra-run variations, revealing differences between the stainers and the slide slots within the stainers. To finalize our study, we performed HER2 and PD-L1 stainings on calibrator slides to measure limit of detection to detect variance per stainer and slot. Our findings prompted extra maintenance from the manufacturer in one of the highly fluctuating stainers, which reduced variation. In conclusion, AI appears to be an effective approach to monitor immunohistochemical stain quality of standardized control cell lines for therapeutic protein targets HER2 and PD-L1, and to trace the underlying errors. This may be crucial for accurate patient management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hlt完成签到 ,获得积分10
1秒前
杨儿完成签到,获得积分10
4秒前
luojimao完成签到,获得积分10
4秒前
李爱国应助阿甘采纳,获得10
5秒前
cc完成签到,获得积分10
5秒前
5秒前
suleisusu应助无心的笑蓝采纳,获得20
6秒前
归尘应助科研通管家采纳,获得10
6秒前
归尘应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
在水一方应助大胆绮兰采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
归尘应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
归尘应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
doug完成签到,获得积分0
7秒前
归尘应助科研通管家采纳,获得10
7秒前
归尘应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助CY采纳,获得10
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
归尘应助科研通管家采纳,获得10
8秒前
归尘应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
wlp鹏完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286