清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Refining Pseudo Labeling via Multi-Granularity Confidence Alignment for Unsupervised Cross Domain Object Detection

人工智能 计算机科学 目标检测 模式识别(心理学) 机器学习 对象(语法) 特征(语言学) 自举(财务) 领域(数学分析) 粒度 数学 数学分析 操作系统 哲学 语言学 计量经济学
作者
Jiangming Chen,Li Liu,Wanxia Deng,Zhen Liu,Yu Liu,Yingmei Wei,Yongxiang Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 279-294
标识
DOI:10.1109/tip.2024.3522807
摘要

Most state-of-the-art object detection methods suffer from poor generalization due to the domain shift between training and testing datasets. To resolve this challenge, unsupervised cross domain object detection is proposed to learn an object detector for an unlabeled target domain by transferring knowledge from an annotated source domain. Promising results have been achieved via Mean Teacher, however, pseudo labeling which is the bottleneck of mutual learning remains to be further explored. In this study, we find that confidence misalignment of the predictions, including category-level overconfidence, instance-level task confidence inconsistency, and image-level confidence misfocusing, leading to the injection of noisy pseudo labels in the training process, will bring suboptimal performance. Considering the above issue, we present a novel general framework termed Multi-Granularity Confidence Alignment Mean Teacher (MGCAMT) for unsupervised cross domain object detection, which alleviates confidence misalignment across category-, instance-, and image-levels simultaneously to refine pseudo labeling for better teacher-student learning. Specifically, to align confidence with accuracy at category level, we propose Classification Confidence Alignment (CCA) to model category uncertainty based on Evidential Deep Learning (EDL) and filter out the category incorrect labels via an uncertainty-aware selection strategy. Furthermore, we design Task Confidence Alignment (TCA) to mitigate the instance-level misalignment between classification and localization by enabling each classification feature to adaptively identify the optimal feature for regression. Finally, we develop imagery Focusing Confidence Alignment (FCA) adopting another way of pseudo label learning, i.e., we use the original outputs from the Mean Teacher network for supervised learning without label assignment to achieve a balanced perception of the image's spatial layout. When these three procedures are integrated into a single framework, they mutually benefit to improve the final performance from a cooperative learning perspective. Extensive experiments across multiple scenarios demonstrate that our method outperforms large foundational models, and surpasses other state-of-the-art approaches by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助10
15秒前
Hello应助X1x1A0Q1采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
27秒前
X1x1A0Q1发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Yound发布了新的文献求助10
1分钟前
Yound完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
detective发布了新的文献求助10
1分钟前
juan完成签到 ,获得积分10
1分钟前
小二郎应助Yound采纳,获得10
1分钟前
1分钟前
detective完成签到,获得积分10
1分钟前
lzzj发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助哈哈采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lzzj发布了新的文献求助10
2分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
科研通AI5应助刻苦的源智采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助30
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
YJM完成签到,获得积分10
3分钟前
orixero应助cheng采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666407
求助须知:如何正确求助?哪些是违规求助? 3225444
关于积分的说明 9763009
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188