Breast radiation therapy fluence painting with multi‐agent deep reinforcement learning

放射治疗 强化学习 医学物理学 通量 医学 人工智能 计算机科学 辐照 放射科 物理 核物理学
作者
Yang Dongrong,Xinyi Li,Yoo Sua,Blitzblau Rachel,M Molineaux Susan,Stephens Sarah,Santanu Paul,Wu Q. Jackie,Sheng Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17615
摘要

The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation. To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives. With institutional review board (IRB) approval, 70 patients treated with 6MV tangential photon beams with ECOMP technique were retrospectively collected and included in this study (20/50 for training/testing). Each pixel in the fluence map was assigned a reinforcement learning agent to perform independent action. Beam-eye-view projected dose profiles were generated to form state information as the input of the RL network. By predicting the Q value, pixel-wise actions were selected to modify specific pixel value in the fluence maps to improve overall plan quality. After dose calculation, reward signal calculated from the variation of target coverage and dose homogeneity was fed back to the RL framework and used to update network parameters. The RL generated plans were evaluated with dose distribution and dosimetric endpoints (i.e., Breast PTV V90%, Breast PTV V95%, Breast PTV V105%, Lung V20 Gy, Heart V5 Gy, Dmax) and compared with clinical plans. The RL agent took around 90 s to generate a ECOMP treatment plan. The RL plans exhibited plan quality comparable to clinical plans in terms of isodose distribution and dosimetric endpoints. The mean Breast PTV V95%, Breast PTV V105% of RL plans are 77.759%(±8.904%)$77.759{\mathrm{\ \% }}( { \pm 8.904{\mathrm{\ \% }}} )$ and 8.522cc(±11.469cc)$8.522{\mathrm{\ cc\ }}( { \pm 11.469{\mathrm{\ cc}}} )$ , compared to 78.568%(±9.094%)$78.568{\mathrm{\ \% }}( { \pm 9.094{\mathrm{\ \% }}} )$ and 34.298cc(±36.297cc)$34.298\ {\mathrm{cc}}\ ( { \pm 36.297{\mathrm{\ cc}}} )$ cc of clinical plans. The developed RL framework efficiently generates breast ECOMP plans with clinical acceptable plan quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小马甲应助ssss采纳,获得10
1秒前
qiong发布了新的文献求助10
2秒前
王蕊发布了新的文献求助10
2秒前
3秒前
3秒前
吾日三省吾身完成签到,获得积分10
3秒前
动听的代曼完成签到,获得积分10
4秒前
6秒前
在水一方应助罗小小采纳,获得10
6秒前
巨噬细胞A发布了新的文献求助50
6秒前
美丽芷珍关注了科研通微信公众号
9秒前
9秒前
10秒前
标致的蹇发布了新的文献求助10
11秒前
Jonas发布了新的文献求助10
11秒前
12秒前
上善若水发布了新的文献求助10
13秒前
巨噬细胞A完成签到,获得积分10
15秒前
16秒前
16秒前
Bobo发布了新的文献求助10
16秒前
17秒前
19秒前
典雅的萤发布了新的文献求助10
20秒前
gyh完成签到,获得积分10
20秒前
所所应助qiong采纳,获得10
22秒前
22秒前
和光同尘完成签到,获得积分10
23秒前
阳光代容完成签到,获得积分10
23秒前
慕青应助xushanqi采纳,获得10
24秒前
24秒前
27秒前
28秒前
qiaoyang完成签到,获得积分20
28秒前
打打应助就学一点点采纳,获得10
28秒前
AnsonYang关注了科研通微信公众号
28秒前
852应助Pomelo采纳,获得10
29秒前
柯一一应助标致的蹇采纳,获得10
30秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Hopemont Capacity Assessment Interview manual and scoring guide 650
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422550
求助须知:如何正确求助?哪些是违规求助? 3022763
关于积分的说明 8902757
捐赠科研通 2710307
什么是DOI,文献DOI怎么找? 1486376
科研通“疑难数据库(出版商)”最低求助积分说明 687051
邀请新用户注册赠送积分活动 682285