Near‐Term Forecasting of Terrestrial Mobile Species Distributions for Adaptive Management Under Extreme Weather Events

后发 极端天气 气候变化 环境科学 粮食安全 地理 环境资源管理 生态学 气候学 气象学 生物 地质学 农业
作者
Rachel Dobson,Stephen G. Willis,Stewart Jennings,Robert Cheke,Andrew J. Challinor,Martin Dallimer
出处
期刊:Global Change Biology [Wiley]
卷期号:30 (11)
标识
DOI:10.1111/gcb.17579
摘要

ABSTRACT Across the globe, mobile species are key components of ecosystems. Migratory birds and nomadic antelope can have considerable conservation, economic or societal value, while irruptive insects can be major pests and threaten food security. Extreme weather events, which are increasing in frequency and intensity under ongoing climate change, are driving rapid and unforeseen shifts in mobile species distributions. This challenges their management, potentially leading to population declines, or exacerbating the adverse impacts of pests. Near‐term, within‐year forecasting may have the potential to anticipate mobile species distribution changes during extreme weather events, thus informing adaptive management strategies. Here, for the first time, we assess the robustness of near‐term forecasting of the distribution of a terrestrial species under extreme weather. For this, we generated near‐term (2 weeks to 7 months ahead) distribution forecasts for a crop pest that is a threat to food security in southern Africa, the red‐billed quelea Quelea quelea . To assess performance, we generated hindcasts of the species distribution across 13 years (2004–2016) that encompassed two major droughts. We show that, using dynamic species distribution models (D‐SDMs), environmental suitability for quelea can be accurately forecast with seasonal lead times (up to 7 months ahead), at high resolution, and across a large spatial scale, including in extreme drought conditions. D‐SDM predictive accuracy and near‐term hindcast reliability were primarily driven by the availability of training data rather than overarching weather conditions. We discuss how a forecasting system could be used to inform adaptive management of mobile species and mitigate impacts of extreme weather, including by anticipating sites and times for transient management and proactively mobilising resources for prepared responses. Our results suggest that such techniques could be widely applied to inform more resilient, adaptive management of mobile species worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
颖火虫发布了新的文献求助10
2秒前
Tianju发布了新的文献求助10
3秒前
xujy完成签到,获得积分10
3秒前
wanci应助chaiyuyang采纳,获得30
3秒前
可爱的函函应助CQ采纳,获得10
3秒前
5秒前
tzy完成签到,获得积分10
5秒前
JamesPei应助Mira采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得50
5秒前
无花果应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
wssy完成签到,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
Gavin完成签到,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Maeve应助科研通管家采纳,获得50
6秒前
潘宋完成签到,获得积分10
7秒前
7秒前
颖二二完成签到 ,获得积分10
7秒前
weixin112233发布了新的文献求助10
8秒前
颖火虫完成签到,获得积分20
9秒前
科研通AI5应助beacom采纳,获得10
9秒前
10秒前
咕咕完成签到,获得积分20
11秒前
11秒前
11秒前
14秒前
星河长明完成签到,获得积分10
14秒前
14秒前
你怎么睡得着觉完成签到,获得积分10
15秒前
weixin112233完成签到,获得积分10
15秒前
012发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751123
求助须知:如何正确求助?哪些是违规求助? 3294605
关于积分的说明 10086748
捐赠科研通 3009766
什么是DOI,文献DOI怎么找? 1652872
邀请新用户注册赠送积分活动 787788
科研通“疑难数据库(出版商)”最低求助积分说明 752393