清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring digital therapeutics for mental health: AI-driven innovations in personalized treatment approaches

心理健康 个性化医疗 心理学 计算机科学 数据科学 医学 心理治疗师 生物信息学 生物
作者
Aisha Katsina Isa
出处
期刊:World Journal Of Advanced Research and Reviews [GSC Online Press]
卷期号:24 (3): 2733-2749
标识
DOI:10.30574/wjarr.2024.24.3.3997
摘要

Digital therapeutics have emerged as a transformative approach in addressing mental health challenges, offering evidence-based, technology-driven interventions. As mental health disorders become increasingly prevalent globally, traditional methods of treatment often fail to meet the growing demand due to limited accessibility, stigmatization, and resource constraints. Digital therapeutics leverage advanced technologies, including artificial intelligence (AI), to bridge these gaps, providing scalable and personalized mental health solutions. AI has revolutionized this domain by enabling adaptive, data-driven interventions that cater to individual needs, ranging from mood disorders to complex conditions like post-traumatic stress disorder (PTSD) and depression. At a broader level, digital therapeutics represent a paradigm shift in healthcare, transitioning from generalized care models to highly personalized and proactive frameworks. AI-driven innovations, such as natural language processing (NLP), predictive analytics, and machine learning algorithms, have enhanced the efficacy of digital mental health tools by facilitating real-time monitoring, symptom analysis, and tailored therapeutic recommendations. These innovations integrate seamlessly with wearables, mobile applications, and virtual reality, providing patients with accessible and engaging platforms for mental health management. However, while AI-based digital therapeutics show immense promise, challenges remain. Ethical concerns about data privacy, bias in AI algorithms, and equitable access need to be addressed to maximize their potential. Additionally, integrating these tools into existing healthcare systems requires alignment with regulatory frameworks and clinician support. By narrowing the focus to personalized treatment approaches, this paper explores how AI-driven digital therapeutics can advance mental health care, providing actionable insights into creating more inclusive, effective, and accessible interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的含蕾完成签到 ,获得积分10
刚刚
颜林林完成签到,获得积分10
3秒前
wxyinhefeng完成签到 ,获得积分10
5秒前
大熊完成签到 ,获得积分10
9秒前
研友_ZbP41L完成签到 ,获得积分10
20秒前
跳跃的鹏飞完成签到 ,获得积分10
20秒前
一彤展翅完成签到,获得积分10
49秒前
川藏客完成签到 ,获得积分10
53秒前
四叶草完成签到 ,获得积分10
56秒前
LZQ完成签到,获得积分10
57秒前
jlwang完成签到,获得积分10
58秒前
姚芭蕉完成签到 ,获得积分0
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
vampire完成签到,获得积分10
1分钟前
aiyawy完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
程程发布了新的文献求助10
2分钟前
明亮梦山完成签到 ,获得积分10
2分钟前
霜降完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
konosuba完成签到,获得积分10
3分钟前
latiao99完成签到,获得积分10
3分钟前
简奥斯汀完成签到 ,获得积分10
3分钟前
3分钟前
萨尔莫斯完成签到,获得积分10
4分钟前
4分钟前
4分钟前
丘比特应助淡然的凉面采纳,获得10
4分钟前
忘忧Aquarius完成签到,获得积分10
4分钟前
Akim应助斩荆披棘采纳,获得10
4分钟前
菩提本无树完成签到,获得积分10
5分钟前
lovexa完成签到,获得积分10
5分钟前
清秀的怀蕊完成签到 ,获得积分0
5分钟前
5分钟前
白萝卜完成签到,获得积分10
5分钟前
5分钟前
5分钟前
creep2020完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831108
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890