Emotional recognition of EEG signals utilizing residual structure fusion in bi-directional LSTM

残余物 计算智能 模式识别(心理学) 人工智能 脑电图 计算机科学 语音识别 融合 心理学 神经科学 算法 语言学 哲学
作者
Yue Xu,Yunyuan Gao,Zhengnan Zhang,Songliang Du
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1)
标识
DOI:10.1007/s40747-024-01682-y
摘要

Emotion recognition using electroencephalogram (EEG) signals had attracted significant research attention. This paper introduced a new approach, Multi-scale-res BiLSTM (MRBiL), to enhance EEG emotion recognition. Firstly, differential entropy features were extracted from EEG data during both resting and active states. The disparity between these two states was then calculated to generate a feature matrix, which was subsequently input into a multi-scale convolution block. The high-dimensional feature matrix extracted from the convolution block was mapped using a residual block. The feature signal sequence was then processed by a bidirectional long-term short-term memory network. Finally, the emotion recognition result was obtained through the classification layer. The algorithm was validated in the DEAP dataset, resulting in average accuracies of 0.9788 for binary classification of validity and arousal. Furthermore, the algorithm attained an average accuracy of 0.9685 for quadruple classification. Additionally, ablation experiments were conducted in this study to affirm the effectiveness of each deep learning component within MRBiL. The experimental results demonstrated that the novel neural network model proposed in this paper had outperformed currently available methods in emotion recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青木蓝发布了新的文献求助10
1秒前
852应助gaga采纳,获得10
1秒前
2秒前
2秒前
游尘发布了新的文献求助10
3秒前
bkagyin应助zhaowenxian采纳,获得10
3秒前
水电费第三方完成签到,获得积分20
4秒前
斯文败类应助lalala采纳,获得10
4秒前
小王爱看文献完成签到,获得积分10
5秒前
李明完成签到,获得积分10
5秒前
酷波er应助Khr1stINK采纳,获得10
6秒前
cora发布了新的文献求助10
6秒前
shelly0621发布了新的文献求助10
6秒前
中华有为发布了新的文献求助10
6秒前
特兰克斯发布了新的文献求助10
6秒前
Ares完成签到,获得积分10
7秒前
7秒前
在水一方应助garyaa采纳,获得10
7秒前
DAN_完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助屹舟采纳,获得10
8秒前
科研通AI5应助一一采纳,获得10
9秒前
隐形的紫菜完成签到,获得积分10
9秒前
23132发布了新的文献求助10
10秒前
cora完成签到,获得积分10
11秒前
放眼天下完成签到 ,获得积分10
12秒前
文毛完成签到,获得积分10
12秒前
12秒前
13秒前
兴奋的问旋完成签到,获得积分10
13秒前
张张完成签到,获得积分10
13秒前
陈文学完成签到,获得积分10
14秒前
一一发布了新的文献求助10
14秒前
bkagyin应助潇洒的冷玉采纳,获得10
15秒前
通~发布了新的文献求助10
15秒前
15秒前
芒果完成签到,获得积分10
15秒前
16秒前
cly3397完成签到,获得积分10
16秒前
开心发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794