Emotional recognition of EEG signals utilizing residual structure fusion in bi-directional LSTM

残余物 计算智能 模式识别(心理学) 人工智能 脑电图 计算机科学 语音识别 融合 心理学 神经科学 算法 语言学 哲学
作者
Yue Xu,Yunyuan Gao,Zhengnan Zhang,Songliang Du
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1)
标识
DOI:10.1007/s40747-024-01682-y
摘要

Emotion recognition using electroencephalogram (EEG) signals had attracted significant research attention. This paper introduced a new approach, Multi-scale-res BiLSTM (MRBiL), to enhance EEG emotion recognition. Firstly, differential entropy features were extracted from EEG data during both resting and active states. The disparity between these two states was then calculated to generate a feature matrix, which was subsequently input into a multi-scale convolution block. The high-dimensional feature matrix extracted from the convolution block was mapped using a residual block. The feature signal sequence was then processed by a bidirectional long-term short-term memory network. Finally, the emotion recognition result was obtained through the classification layer. The algorithm was validated in the DEAP dataset, resulting in average accuracies of 0.9788 for binary classification of validity and arousal. Furthermore, the algorithm attained an average accuracy of 0.9685 for quadruple classification. Additionally, ablation experiments were conducted in this study to affirm the effectiveness of each deep learning component within MRBiL. The experimental results demonstrated that the novel neural network model proposed in this paper had outperformed currently available methods in emotion recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qhuzhl完成签到,获得积分10
1秒前
斯文败类应助xy采纳,获得10
1秒前
zhogwe完成签到,获得积分10
3秒前
5秒前
BINGBING1230发布了新的文献求助10
5秒前
6秒前
科研小能手完成签到,获得积分10
6秒前
知北完成签到,获得积分10
7秒前
韩七安发布了新的文献求助10
7秒前
脑洞疼应助jinhongyangkim采纳,获得10
7秒前
负责的凌波应助太渊采纳,获得30
8秒前
9秒前
9秒前
gt完成签到 ,获得积分10
10秒前
小蘑菇应助勉乎哉采纳,获得10
10秒前
11秒前
星辰大海应助wangqing采纳,获得10
11秒前
XYHH发布了新的文献求助10
12秒前
阿七完成签到,获得积分10
12秒前
13秒前
乐乐应助mnc采纳,获得10
13秒前
小二郎应助吃一口芝士采纳,获得10
14秒前
超级绫完成签到 ,获得积分10
14秒前
领导范儿应助Rain采纳,获得10
15秒前
15秒前
不安的chen完成签到,获得积分10
15秒前
mingmingjiu发布了新的文献求助10
16秒前
科研鼠完成签到 ,获得积分10
16秒前
李健的小迷弟应助LS采纳,获得10
16秒前
weiwei完成签到,获得积分10
17秒前
17秒前
ada完成签到,获得积分10
17秒前
王浩轩发布了新的文献求助10
18秒前
18秒前
Orange应助迷人冬灵采纳,获得10
18秒前
bkagyin应助无奈敏采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337