Emotional recognition of EEG signals utilizing residual structure fusion in bi-directional LSTM

残余物 计算智能 模式识别(心理学) 人工智能 脑电图 计算机科学 语音识别 融合 心理学 神经科学 算法 语言学 哲学
作者
Yue Xu,Yunyuan Gao,Zhengnan Zhang,Songliang Du
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1)
标识
DOI:10.1007/s40747-024-01682-y
摘要

Emotion recognition using electroencephalogram (EEG) signals had attracted significant research attention. This paper introduced a new approach, Multi-scale-res BiLSTM (MRBiL), to enhance EEG emotion recognition. Firstly, differential entropy features were extracted from EEG data during both resting and active states. The disparity between these two states was then calculated to generate a feature matrix, which was subsequently input into a multi-scale convolution block. The high-dimensional feature matrix extracted from the convolution block was mapped using a residual block. The feature signal sequence was then processed by a bidirectional long-term short-term memory network. Finally, the emotion recognition result was obtained through the classification layer. The algorithm was validated in the DEAP dataset, resulting in average accuracies of 0.9788 for binary classification of validity and arousal. Furthermore, the algorithm attained an average accuracy of 0.9685 for quadruple classification. Additionally, ablation experiments were conducted in this study to affirm the effectiveness of each deep learning component within MRBiL. The experimental results demonstrated that the novel neural network model proposed in this paper had outperformed currently available methods in emotion recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴小苏完成签到,获得积分10
1秒前
ZYYZYY发布了新的文献求助30
1秒前
1秒前
1秒前
wwwu完成签到,获得积分10
1秒前
蜘猪侠发布了新的文献求助10
1秒前
科研通AI5应助烂漫的绿蝶采纳,获得10
1秒前
Gotyababy发布了新的文献求助10
2秒前
Yolo完成签到,获得积分10
2秒前
2秒前
Kenny发布了新的文献求助10
2秒前
2秒前
哪吒完成签到,获得积分20
2秒前
123466关注了科研通微信公众号
3秒前
oneday发布了新的文献求助10
3秒前
JIAYIWANG完成签到,获得积分20
3秒前
一直找不到文献完成签到 ,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
DrY发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
5秒前
领导范儿应助纪秋采纳,获得10
5秒前
小白一号完成签到,获得积分10
5秒前
5秒前
6秒前
赵卓发布了新的文献求助10
6秒前
高源完成签到,获得积分20
7秒前
好运来发发发完成签到,获得积分10
7秒前
Jasper应助7_蜗牛采纳,获得10
7秒前
充电宝应助机智的寒天采纳,获得10
7秒前
8秒前
wss发布了新的文献求助10
8秒前
华仔应助秧秧采纳,获得10
8秒前
beenest完成签到,获得积分10
9秒前
Dr.zhong发布了新的文献求助10
9秒前
9秒前
10秒前
鲸鱼发布了新的文献求助10
10秒前
长情的尔蓝完成签到,获得积分10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559