作者
Kevin Y. Wu,Natalie Kearn,Doanh Truong,Mazen Y. Choulakian,Simon D. Tran
摘要
Advances in regenerative medicine, cell therapy, and 3D bioprinting are reshaping the landscape of ocular surgery, offering innovative approaches to address complex conditions affecting the cornea, ocular adnexal structures, and the orbit. These technologies hold the potential to enhance treatment precision, improve functional outcomes, and address limitations in traditional surgical and therapeutic interventions.The cornea, as the eye's primary refractive and protective barrier, is particularly well-suited for regenerative approaches due to its avascular and immune-privileged nature. Cell-based therapies, including limbal stem cell transplantation as well as stromal keratocyte and corneal endothelial cell regeneration, are being investigated for their potential to restore corneal clarity and function in conditions such as limbal stem cell deficiency, keratoconus, and endothelial dysfunction. Simultaneously, 3D bioprinting technologies are enabling the development of biomimetic corneal constructs, potentially addressing the global shortage of donor tissues and facilitating personalized surgical solutions.In oculoplastic and orbital surgery, regenerative strategies and cell therapies are emerging as possible alternatives to conventional approaches for conditions such as eyelid defects, meibomian gland dysfunction, and Graves' orbitopathy. Stem cell-based therapies and bioengineered scaffolds are showing potential in restoring lacrimal glands' function as well as reconstructing complex ocular adnexal and orbital structures. Moreover, 3D-printed orbital implants and scaffolds offer innovative solutions for repairing traumatic, post-tumor resection, and congenital defects, with the potential for improved biocompatibility and precision.Molecular and gene-based therapies, including exosome delivery systems, nanoparticle-based interventions, and gene-editing techniques, are expanding the therapeutic arsenal for ophthalmic disorders. These approaches aim to enhance the efficacy of regenerative treatments by addressing underlying pathophysiological mechanisms of diseases. This chapter provides an overview of these advancements and the challenges of translating laboratory discoveries into effective therapies in clinical practice.