Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation

计算机科学 概化理论 约束(计算机辅助设计) 人工智能 机器学习 领域(数学分析) 边距(机器学习) 电池(电) 对抗制 钥匙(锁) 数据挖掘 功率(物理) 工程类 数学 数学分析 物理 机械工程 统计 计算机安全 量子力学
作者
Jiabei He,Lifeng Wu
出处
期刊:Energy [Elsevier]
卷期号:277: 127559-127559 被引量:13
标识
DOI:10.1016/j.energy.2023.127559
摘要

Accurate estimation of lithium-ion battery capacity is important for battery management systems. Traditional deep learning algorithms assume in advance that the training and test data satisfy independent identical distribution (IID). However, this ideal assumption reduces the generalizability of related methods because the battery operating conditions are often diverse. To address this issue, an unsupervised constrained adversarial domain adaptation method based on causal analysis, attention mechanism and Mogrifier-LSTM (CAM-LSTM-DA) is proposed. First, causal analysis is used to select health indicators (HIs) that are intrinsically associated with capacity degradation, ensuring that the constructed model is valid for the target domain. Then, we adopt Mogrifier-LSTM with key-value pair attention mechanism as the primary network, forcing the learned embedding to have rich degradation information. Finally, to avoid the negative transfer brought by traditional domain adaptation methods, we propose a constrained adversarial domain adaptation method that uses a self-supervised learning module with dynamic temperature and a semantic information constraint module to constrain feature alignment in terms of temporal and semantic information, respectively. The extensive cross-conditions experiments validate the generalizability and prediction performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
和谐乌龟发布了新的文献求助10
2秒前
zZ完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
2秒前
LYY发布了新的文献求助10
3秒前
wangfu完成签到,获得积分10
3秒前
ding应助Dddd采纳,获得10
4秒前
yin发布了新的文献求助10
4秒前
大模型应助张张采纳,获得10
4秒前
Akim应助吾问无为谓采纳,获得10
5秒前
5秒前
神勇的冰姬完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
tony完成签到,获得积分10
8秒前
Uynaux发布了新的文献求助30
8秒前
SONG完成签到,获得积分10
8秒前
SYLH应助干秋白采纳,获得10
9秒前
9秒前
风雨1210发布了新的文献求助10
10秒前
文艺书雪完成签到 ,获得积分10
10秒前
独行侠完成签到,获得积分10
10秒前
11秒前
我测你码发布了新的文献求助10
11秒前
又要起名字完成签到,获得积分10
11秒前
11秒前
11秒前
damian完成签到,获得积分10
12秒前
LiShin发布了新的文献求助10
12秒前
渝州人应助凤凰山采纳,获得10
13秒前
sweetbearm应助凤凰山采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794