Bombardier Aftermarket Demand Forecast with Machine Learning

备品备件 需求预测 计算机科学 分析 按需 过程(计算) 经济短缺 运筹学 数据挖掘 工程类 运营管理 语言学 多媒体 哲学 政府(语言学) 操作系统
作者
Pierre Dodin,Jingyi Xiao,Yossiri Adulyasak,Neda Etebari Alamdari,Léa Gauthier,Philippe Grangier,Paul Lemaître,William L. Hamilton
出处
期刊:INFORMS journal on applied analytics [Institute for Operations Research and the Management Sciences]
卷期号:53 (6): 425-445 被引量:6
标识
DOI:10.1287/inte.2023.1164
摘要

Intermittent demand patterns are commonly present in business aircraft spare parts supply chains. Because of the infrequent arrivals and large variations in demand, aircraft aftermarket demand is difficult to forecast, which often leads to shortages or overstocking of spare parts. In this paper, we present the development and implementation of an advanced analytics framework at Bombardier Aerospace, which is carried out by the Bombardier inventory planning team and IVADO Labs to improve the aftermarket demand forecasting process. This integrated predictive analytics pipeline leverages machine-learning (ML) models and traditional time series models in a single framework in a systematic fashion. We also make use of a tree-based machine-learning method with a large set of input features to estimate two components of intermittent demand, namely demand sizes and interdemand intervals. Through the ML models, we incorporate different features, including those derived from flight data. Outputs of different forecasting models are combined using an ensemble technique that enhances the robustness and accuracy of the forecasts for different groups of aftermarket spare parts categorized by demand patterns. The validation results show an improvement in forecast accuracy of approximately 7% and in unbiased forecast of 5%. The ML-based Bombardier Aftermarket forecasting system has been successfully deployed and used to forecast the aftermarket demand at Bombardier of more than 1 billion Canadian dollars on a regular basis. History: This paper was refereed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffiu完成签到,获得积分10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
小垃圾应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
奈木扎完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
优游悠悠完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
旋转胡萝卜完成签到,获得积分10
2秒前
LIUYONG完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
rikii完成签到 ,获得积分10
2秒前
mila发布了新的文献求助10
3秒前
小星发布了新的文献求助10
3秒前
marcie完成签到,获得积分10
4秒前
HUAJIAO完成签到,获得积分20
4秒前
落红禹03完成签到,获得积分10
6秒前
6秒前
慕知完成签到 ,获得积分20
7秒前
满眼星辰完成签到,获得积分10
7秒前
7秒前
Handsome完成签到,获得积分10
8秒前
王欣完成签到 ,获得积分10
8秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702031
求助须知:如何正确求助?哪些是违规求助? 3252014
关于积分的说明 9877698
捐赠科研通 2964059
什么是DOI,文献DOI怎么找? 1625457
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742729