Deep Multimodal Learning for Traffic Speed Estimation Combining Dedicated Short-Range Communication and Vehicle Detection System Data

深度学习 计算机科学 稳健性(进化) 人工智能 航程(航空) 传感器融合 智能交通系统 模态(人机交互) 人工神经网络 数据建模 数据挖掘 机器学习 实时计算 工程类 生物化学 化学 土木工程 数据库 基因 航空航天工程
作者
Jin Hong Min,Seung Woo Ham,Dong‐Kyu Kim,Eun Hak Lee
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (5): 247-259 被引量:9
标识
DOI:10.1177/03611981221130026
摘要

The estimation of traffic variables and provision of traffic information are the most important components of intelligent transportation systems. Advances in technology have led to the collection of various traffic sensor data, and nonlinear dependencies between traffic variables have enabled the development of models based on deep learning approaches. However, there is a missing data segment where data collection is not possible because of the non-installation of the sensor, malfunction of the sensor, or error in communication. In this study, a deep multimodal model is proposed for traffic speed estimation of the missing data segment. We implement the proposed model using two heterogeneous traffic sensors, that is, a vehicle detection system and dedicated short-range communication. The structure of the proposed model consists of three multilayer perceptron models, two of which receive each modality as input data and one fusion model that receives the concatenated outputs from each modality model as input data. To evaluate the estimation performance of the deep multimodal model, we use three performance measures to compare the multimodal model with the arithmetic average model and a single-modality model. The results show that the single-modality model and the proposed deep multimodal model outperform the arithmetic average model. In particular, the deep multimodal model shows the highest accuracies of 90.5% and 92.1% on weekends and peak hours, respectively, without reflecting the true value. The proposed deep multimodal model has three contributions, that is, high accuracy using two different sensors, robustness in various periods, and real-time application with fast computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AoAoo发布了新的文献求助10
3秒前
清修发布了新的文献求助10
5秒前
数树发布了新的文献求助10
5秒前
淡淡易云完成签到 ,获得积分10
8秒前
8秒前
lwkk完成签到 ,获得积分10
8秒前
8秒前
花生油炒花生米完成签到,获得积分10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
惜曦完成签到 ,获得积分10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
若雪成依完成签到 ,获得积分10
11秒前
14秒前
16秒前
16秒前
17秒前
zzz发布了新的文献求助10
18秒前
yangs完成签到,获得积分10
19秒前
鹿阿布发布了新的文献求助10
19秒前
yi发布了新的文献求助10
21秒前
ky幻影发布了新的文献求助30
21秒前
22秒前
上山石头完成签到,获得积分10
23秒前
笑而不语完成签到 ,获得积分10
26秒前
YamDaamCaa应助zzz采纳,获得30
26秒前
须眉交白完成签到,获得积分10
27秒前
忧伤的元菱完成签到 ,获得积分10
27秒前
科研小兵兵完成签到,获得积分10
27秒前
陈珂完成签到,获得积分10
28秒前
ellen完成签到,获得积分10
30秒前
wcy完成签到 ,获得积分10
31秒前
32秒前
科研通AI5应助伯努利采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578