An improved faster RCNN-based weld ultrasonic atlas defect detection method

计算机科学 超声波传感器 斑点检测 人工智能 算法 模式识别(心理学) 集合(抽象数据类型) 边缘检测 图像处理 声学 图像(数学) 物理 程序设计语言
作者
Changhong Chen,Shaofeng Wang,Shunzhou Huang
出处
期刊:Measurement & Control [SAGE]
卷期号:56 (3-4): 832-843 被引量:7
标识
DOI:10.1177/00202940221092030
摘要

In view of the complex multi-scale target detection environment of ultrasonic atlas of weld defect and the poor detection performance of existing algorithms for the multiple small target defects, the Faster RCNN convolution neural network is applied to weld defect detection, and a Fast RCNN deep learning network is proposed in combination with an improved ResNet 50. Based on the coexistence of multiple small targets and multi-scale target detection, this paper proposes to combine deformable network, FPN network and ResNet50 to improve the detection performance of the algorithm for multi-scale targets, especially small targets. Based on the efficiency and accuracy of candidate frame selection, K-means clustering algorithm and ROI Align algorithm are proposed, and the anchors points and candidate frames suitable for weld defect data sets are customized for accurate positioning. Through the self-made ultrasonic atlas data set of weld defects and experimental verification of the improved algorithm in this paper, the overall mean average precision has reaches 93.72%, and the average precision of small target defects such as “stoma” and “crack” has reaches 92.5% and 88.9% respectively, which is 4.8% higher than the original Faster RCNN algorithm. At the same time, through the ablation experiments and comparison experiments with other mainstream target detection algorithms, it is proved that the improved method proposed in this paper improves the detection performance and is superior to other algorithms. The actual industrial detection scene proves that it basically meets the requirements of weld defect detection, and can provide a reference for the intelligent detection method of weld defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡上的鸽子粪完成签到,获得积分10
刚刚
重要冰薇发布了新的文献求助10
刚刚
pangdahai发布了新的文献求助10
2秒前
2秒前
HEIKU应助飞在夏夜的猫采纳,获得10
2秒前
caihua完成签到,获得积分10
3秒前
我是躺平的科研小辣鸡关注了科研通微信公众号
3秒前
5秒前
紫竹关注了科研通微信公众号
5秒前
5秒前
符水发布了新的文献求助10
5秒前
大个应助kkkkkk采纳,获得10
6秒前
6秒前
JKIKU完成签到 ,获得积分10
7秒前
斯文败类应助健忘天问采纳,获得10
8秒前
bryceeluo发布了新的文献求助10
11秒前
彭于晏应助Sally采纳,获得10
12秒前
111发布了新的文献求助30
13秒前
搜集达人应助优美的背包采纳,获得10
14秒前
Ava应助1234采纳,获得10
15秒前
飞在夏夜的猫完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
紫竹发布了新的文献求助20
17秒前
caihua发布了新的文献求助10
19秒前
bryceeluo完成签到,获得积分10
20秒前
健忘天问发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
左囧发布了新的文献求助10
25秒前
25秒前
整齐念文发布了新的文献求助10
25秒前
26秒前
28秒前
yxy840325发布了新的文献求助10
28秒前
朴素怀寒发布了新的文献求助30
29秒前
雪饼完成签到 ,获得积分20
29秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503