Motion Sickness Detection for Intelligent Vehicles: A Wearable-Device-Based Approach

运动病 可穿戴计算机 运动(物理) 计算机科学 特征提取 人工智能 运动检测 实时计算 机器学习 计算机视觉 模拟 嵌入式系统 医学 放射科
作者
Ruichen Tan,Wenbo Li,Fengqing Hu,Xiaofeng Xiao,Shen Li,Yang Xing,Hong Wang,Dongpu Cao
标识
DOI:10.1109/itsc55140.2022.9922392
摘要

Motion sickness is known to be an important and common factor affecting passengers' ride experience. With the popularization of intelligent vehicles, the development of multi-modal interaction methods will provide a chance to solve this problem. Therefore, the detection and mitigation of motion sickness will be an important topic for the future development of intelligent vehicles. However, detecting motion sickness using physiological and subjective data obtained in an on-road driving scenario has rarely been studied in related research. This paper proposed a solution framework for the physiological-signal-based motion sickness detection in on-road driving scenarios. Then, according to the framework, an on-road driving experiment is conducted to gather real-time physiological data using wearable devices. 12 participants took part in these experiments and about 120 min of motion sickness data were generated for analysis. The feature extraction was performed to analyze and extract the important physiological features related to motion sickness in real-world scenarios. Then the features were split into several combination groups and the representative machine learning models were trained to compare the results when different combinations were input. These detection models provide reasonable and effective detection when using the limited kind of physiological data. This method proposed in this paper will benefit the application of the motion sickness detection model in real vehicles. Meanwhile, since the visual input signals are not included, the solution is privacy-protected. In the future, with this solution, vehicles will also be able to detect motion sickness levels in real-time through low-cost daily wearable devices, such as smartwatches and glasses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄青青完成签到,获得积分10
刚刚
刚刚
yyy完成签到,获得积分10
刚刚
zhuang完成签到,获得积分20
刚刚
1秒前
深情安青应助evelyn采纳,获得10
1秒前
怡yi完成签到,获得积分10
1秒前
Nuyoah发布了新的文献求助10
1秒前
卫半山完成签到 ,获得积分10
1秒前
谨慎建辉完成签到,获得积分10
2秒前
2秒前
2秒前
w233完成签到,获得积分10
3秒前
孙老师完成签到 ,获得积分10
3秒前
3秒前
qhf完成签到 ,获得积分10
3秒前
gjy关闭了gjy文献求助
3秒前
李钢完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
NexusExplorer应助陈帅采纳,获得10
5秒前
安雯完成签到,获得积分10
5秒前
梦灵发布了新的文献求助10
5秒前
5秒前
Elanie.zh发布了新的文献求助10
5秒前
Lucas应助陌上花开采纳,获得10
5秒前
5秒前
稳重的傲芙完成签到,获得积分10
5秒前
6秒前
科研通AI6应助灵巧的荔枝采纳,获得10
6秒前
6秒前
怡yi发布了新的文献求助10
6秒前
赛因斯完成签到,获得积分10
6秒前
yukang完成签到,获得积分10
7秒前
zhang23333完成签到,获得积分10
7秒前
蓝海完成签到,获得积分10
7秒前
8秒前
连国发布了新的文献求助10
9秒前
可爱的函函应助leeshho采纳,获得10
9秒前
SDLC完成签到,获得积分10
9秒前
旺仔发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748