Motion Sickness Detection for Intelligent Vehicles: A Wearable-Device-Based Approach

运动病 可穿戴计算机 运动(物理) 计算机科学 特征提取 人工智能 运动检测 实时计算 机器学习 计算机视觉 模拟 嵌入式系统 医学 放射科
作者
Ruichen Tan,Wenbo Li,Fengqing Hu,Xiaofeng Xiao,Shen Li,Yang Xing,Hong Wang,Dongpu Cao
标识
DOI:10.1109/itsc55140.2022.9922392
摘要

Motion sickness is known to be an important and common factor affecting passengers' ride experience. With the popularization of intelligent vehicles, the development of multi-modal interaction methods will provide a chance to solve this problem. Therefore, the detection and mitigation of motion sickness will be an important topic for the future development of intelligent vehicles. However, detecting motion sickness using physiological and subjective data obtained in an on-road driving scenario has rarely been studied in related research. This paper proposed a solution framework for the physiological-signal-based motion sickness detection in on-road driving scenarios. Then, according to the framework, an on-road driving experiment is conducted to gather real-time physiological data using wearable devices. 12 participants took part in these experiments and about 120 min of motion sickness data were generated for analysis. The feature extraction was performed to analyze and extract the important physiological features related to motion sickness in real-world scenarios. Then the features were split into several combination groups and the representative machine learning models were trained to compare the results when different combinations were input. These detection models provide reasonable and effective detection when using the limited kind of physiological data. This method proposed in this paper will benefit the application of the motion sickness detection model in real vehicles. Meanwhile, since the visual input signals are not included, the solution is privacy-protected. In the future, with this solution, vehicles will also be able to detect motion sickness levels in real-time through low-cost daily wearable devices, such as smartwatches and glasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘洋完成签到,获得积分10
1秒前
默苍离倒拔琉璃树完成签到,获得积分10
2秒前
Owen应助dcx采纳,获得10
2秒前
科研通AI5应助Luos采纳,获得10
3秒前
愉快豪完成签到 ,获得积分10
3秒前
小蘑菇应助高豪英采纳,获得10
3秒前
3秒前
hjp发布了新的文献求助10
4秒前
小安完成签到,获得积分10
4秒前
Xuan发布了新的文献求助10
4秒前
6秒前
6秒前
橙子完成签到,获得积分20
7秒前
kun完成签到,获得积分10
7秒前
Nancy完成签到,获得积分10
7秒前
Zeroan发布了新的文献求助10
8秒前
zcl给wspac的求助进行了留言
8秒前
会做饭的才是好厨子完成签到 ,获得积分10
8秒前
大个应助依琬采纳,获得10
8秒前
9秒前
10秒前
10秒前
科研通AI5应助果实采纳,获得30
11秒前
小付马上暴富应助果实采纳,获得10
12秒前
zy关注了科研通微信公众号
12秒前
samuel完成签到,获得积分10
13秒前
13秒前
qikuo发布了新的文献求助10
13秒前
Leon完成签到,获得积分10
13秒前
13秒前
小白发布了新的文献求助10
13秒前
真陈完成签到,获得积分10
14秒前
14秒前
洁洁应助ab采纳,获得10
14秒前
乐乐应助小艾同学采纳,获得10
14秒前
今后应助Xuan采纳,获得10
14秒前
风中绮玉完成签到,获得积分10
14秒前
冯广发布了新的文献求助10
14秒前
15秒前
wanda完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097755
求助须知:如何正确求助?哪些是违规求助? 4310219
关于积分的说明 13429598
捐赠科研通 4137626
什么是DOI,文献DOI怎么找? 2266787
邀请新用户注册赠送积分活动 1269912
关于科研通互助平台的介绍 1206205