Motion Sickness Detection for Intelligent Vehicles: A Wearable-Device-Based Approach

运动病 可穿戴计算机 运动(物理) 计算机科学 特征提取 人工智能 运动检测 实时计算 机器学习 计算机视觉 模拟 嵌入式系统 医学 放射科
作者
Ruichen Tan,Wenbo Li,Fengqing Hu,Xiaofeng Xiao,Shen Li,Yang Xing,Hong Wang,Dongpu Cao
标识
DOI:10.1109/itsc55140.2022.9922392
摘要

Motion sickness is known to be an important and common factor affecting passengers' ride experience. With the popularization of intelligent vehicles, the development of multi-modal interaction methods will provide a chance to solve this problem. Therefore, the detection and mitigation of motion sickness will be an important topic for the future development of intelligent vehicles. However, detecting motion sickness using physiological and subjective data obtained in an on-road driving scenario has rarely been studied in related research. This paper proposed a solution framework for the physiological-signal-based motion sickness detection in on-road driving scenarios. Then, according to the framework, an on-road driving experiment is conducted to gather real-time physiological data using wearable devices. 12 participants took part in these experiments and about 120 min of motion sickness data were generated for analysis. The feature extraction was performed to analyze and extract the important physiological features related to motion sickness in real-world scenarios. Then the features were split into several combination groups and the representative machine learning models were trained to compare the results when different combinations were input. These detection models provide reasonable and effective detection when using the limited kind of physiological data. This method proposed in this paper will benefit the application of the motion sickness detection model in real vehicles. Meanwhile, since the visual input signals are not included, the solution is privacy-protected. In the future, with this solution, vehicles will also be able to detect motion sickness levels in real-time through low-cost daily wearable devices, such as smartwatches and glasses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
莫123发布了新的文献求助10
2秒前
李健应助单身的绮菱采纳,获得10
2秒前
3秒前
打打应助Hibiscus95采纳,获得10
3秒前
4秒前
5秒前
胖Q完成签到 ,获得积分20
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
liciky完成签到 ,获得积分10
8秒前
潘健康发布了新的文献求助10
8秒前
复杂的乐蕊完成签到,获得积分10
8秒前
Dave发布了新的文献求助10
8秒前
林一发布了新的文献求助10
10秒前
今后应助积极的老鼠采纳,获得10
10秒前
彭于晏应助yuhan采纳,获得10
10秒前
sin3xas4sin3x完成签到,获得积分10
11秒前
12秒前
上官若男应助Rosemary采纳,获得10
12秒前
Lim1819完成签到 ,获得积分10
13秒前
脑洞疼应助小胡爱科研采纳,获得10
13秒前
lin发布了新的文献求助20
14秒前
14秒前
17秒前
17秒前
Hibiscus95发布了新的文献求助10
19秒前
19秒前
zy177发布了新的文献求助10
20秒前
20秒前
AN应助小明采纳,获得10
21秒前
Elan完成签到 ,获得积分10
22秒前
xxxx发布了新的文献求助30
22秒前
77发布了新的文献求助10
24秒前
yuhan发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879