Motion Sickness Detection for Intelligent Vehicles: A Wearable-Device-Based Approach

运动病 可穿戴计算机 运动(物理) 计算机科学 特征提取 人工智能 运动检测 实时计算 机器学习 计算机视觉 模拟 嵌入式系统 医学 放射科
作者
Ruichen Tan,Wenbo Li,Fengqing Hu,Xiaofeng Xiao,Shen Li,Yang Xing,Hong Wang,Dongpu Cao
标识
DOI:10.1109/itsc55140.2022.9922392
摘要

Motion sickness is known to be an important and common factor affecting passengers' ride experience. With the popularization of intelligent vehicles, the development of multi-modal interaction methods will provide a chance to solve this problem. Therefore, the detection and mitigation of motion sickness will be an important topic for the future development of intelligent vehicles. However, detecting motion sickness using physiological and subjective data obtained in an on-road driving scenario has rarely been studied in related research. This paper proposed a solution framework for the physiological-signal-based motion sickness detection in on-road driving scenarios. Then, according to the framework, an on-road driving experiment is conducted to gather real-time physiological data using wearable devices. 12 participants took part in these experiments and about 120 min of motion sickness data were generated for analysis. The feature extraction was performed to analyze and extract the important physiological features related to motion sickness in real-world scenarios. Then the features were split into several combination groups and the representative machine learning models were trained to compare the results when different combinations were input. These detection models provide reasonable and effective detection when using the limited kind of physiological data. This method proposed in this paper will benefit the application of the motion sickness detection model in real vehicles. Meanwhile, since the visual input signals are not included, the solution is privacy-protected. In the future, with this solution, vehicles will also be able to detect motion sickness levels in real-time through low-cost daily wearable devices, such as smartwatches and glasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小苗完成签到,获得积分10
刚刚
qxz完成签到,获得积分10
1秒前
Yy完成签到,获得积分10
1秒前
张文卓发布了新的文献求助10
1秒前
bkagyin应助kkuang采纳,获得10
2秒前
小马甲应助徐矜采纳,获得10
3秒前
4秒前
乐乐应助忧虑的破茧采纳,获得10
4秒前
学术搭子完成签到,获得积分10
4秒前
5秒前
Yy发布了新的文献求助10
6秒前
Owen应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得20
8秒前
不配.应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Clover04应助科研通管家采纳,获得10
8秒前
8秒前
dxwy应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
早发论文应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
李爱国应助乾坤采纳,获得10
9秒前
笠柚发布了新的文献求助10
10秒前
10秒前
积木123完成签到,获得积分10
10秒前
沉淀发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152350
求助须知:如何正确求助?哪些是违规求助? 2803575
关于积分的说明 7854759
捐赠科研通 2461234
什么是DOI,文献DOI怎么找? 1310176
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765