Motion Sickness Detection for Intelligent Vehicles: A Wearable-Device-Based Approach

运动病 可穿戴计算机 运动(物理) 计算机科学 特征提取 人工智能 运动检测 实时计算 机器学习 计算机视觉 模拟 嵌入式系统 医学 放射科
作者
Ruichen Tan,Wenbo Li,Fengqing Hu,Xiaofeng Xiao,Shen Li,Yang Xing,Hong Wang,Dongpu Cao
标识
DOI:10.1109/itsc55140.2022.9922392
摘要

Motion sickness is known to be an important and common factor affecting passengers' ride experience. With the popularization of intelligent vehicles, the development of multi-modal interaction methods will provide a chance to solve this problem. Therefore, the detection and mitigation of motion sickness will be an important topic for the future development of intelligent vehicles. However, detecting motion sickness using physiological and subjective data obtained in an on-road driving scenario has rarely been studied in related research. This paper proposed a solution framework for the physiological-signal-based motion sickness detection in on-road driving scenarios. Then, according to the framework, an on-road driving experiment is conducted to gather real-time physiological data using wearable devices. 12 participants took part in these experiments and about 120 min of motion sickness data were generated for analysis. The feature extraction was performed to analyze and extract the important physiological features related to motion sickness in real-world scenarios. Then the features were split into several combination groups and the representative machine learning models were trained to compare the results when different combinations were input. These detection models provide reasonable and effective detection when using the limited kind of physiological data. This method proposed in this paper will benefit the application of the motion sickness detection model in real vehicles. Meanwhile, since the visual input signals are not included, the solution is privacy-protected. In the future, with this solution, vehicles will also be able to detect motion sickness levels in real-time through low-cost daily wearable devices, such as smartwatches and glasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详的冷安完成签到,获得积分10
1秒前
邓娅琴完成签到 ,获得积分10
2秒前
米粥饭完成签到,获得积分10
2秒前
小次之山完成签到,获得积分10
3秒前
3秒前
air-yi完成签到,获得积分10
3秒前
东西南北完成签到,获得积分10
4秒前
johnrambo0625完成签到,获得积分10
4秒前
Army616完成签到,获得积分10
4秒前
乐观的问兰完成签到 ,获得积分10
5秒前
小宋应助nanchuangjiao采纳,获得50
5秒前
骄阳完成签到 ,获得积分10
7秒前
高兴的忆曼完成签到,获得积分10
7秒前
铜豌豆完成签到 ,获得积分10
8秒前
词汇过万完成签到,获得积分10
9秒前
xc完成签到,获得积分10
11秒前
亚亚完成签到 ,获得积分10
12秒前
阔达磬完成签到,获得积分10
12秒前
zr完成签到,获得积分10
12秒前
Waaly完成签到,获得积分10
12秒前
舒心谷雪完成签到 ,获得积分10
12秒前
12秒前
是问完成签到,获得积分10
13秒前
站在桥上看风景完成签到,获得积分10
15秒前
woobinhua完成签到 ,获得积分10
16秒前
迅速天空完成签到 ,获得积分10
16秒前
东郭秋凌完成签到,获得积分10
17秒前
陈尹蓝完成签到 ,获得积分10
18秒前
Akim应助神勇的天问采纳,获得10
19秒前
黄小北完成签到,获得积分10
19秒前
欣慰白山应助StevenW采纳,获得10
21秒前
Lucas应助1111采纳,获得10
21秒前
kiuikiu完成签到,获得积分10
21秒前
小屁孩完成签到,获得积分0
22秒前
HtObama完成签到,获得积分10
23秒前
23秒前
阿呸完成签到,获得积分10
24秒前
不辞完成签到,获得积分10
24秒前
Joeswith完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259