A Conv -Transformer network for heart rate estimation using ballistocardiographic signals

心脏超声心动图 计算机科学 变压器 医学 心脏病学 电气工程 电压 工程类
作者
Miao Zhang,Lishen Qiu,Yuhang Chen,Shuchen Yang,Zhiming Zhang,Lirong Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104302-104302 被引量:8
标识
DOI:10.1016/j.bspc.2022.104302
摘要

• A deep learning method of a Conv-Transformer network with Pyramid input (HR CTP -net) is proposed to directly evaluate the HR from BCG signals. • Transformer is used for the first time to estimate the heart rate of BCG. • For the first time, the MIT-BIH noise stress test database is used in BCG signal analysis and proves its effectiveness. Continuous heart rate (HR) monitoring has great implications for the prevention of chronic diseases, and we use non-contact ballistocardiography(BCG) technology to estimate HR. In this paper, overnight BCG data are acquired from 78 patients using a 10-channel piezoelectric sensor matrix with a sampling rate of 50 Hz. 200 sets of non-overlapping 10 s quiet period data are selected for follow-up work, with a total of 15,600 segments. A Conv-Transformer network with Pyramid input (HR CTP -net) is used to estimate HR values for these segments, where local features are obtained by CNN and global features are calculated by the transformer. This is an end-to-end network without additional post-processing. During the experiment, electrocardiogram (ECG) noise which from the MIT-BIH noise stress test database is also introduced for data augmentation to further improve the network generalization ability. Taking the synchronously collected ECG as the ground truth, the results in the 6-fold cross-validation show that the proposed method achieves the best results on mean absolute error (MAE), standard deviation of absolute error (SDAE) and pearson correlation coefficient (PCC) with 0.93 bpm, 1.31 bpm and 0.97, respectively. To the best of our knowledge, this paper is the first time to introduce transformer and ECG noise into BCG signal analysis and demonstrate their effectiveness. Our proposed HR CTP -net has potential and promise in healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆紫应助流星采纳,获得20
刚刚
2秒前
Joyce完成签到,获得积分10
2秒前
852应助闪闪的斑马采纳,获得10
2秒前
3秒前
不配.给77777777的求助进行了留言
4秒前
道明嗣完成签到 ,获得积分10
5秒前
liunian完成签到,获得积分20
6秒前
6秒前
lehha完成签到,获得积分10
6秒前
定西发布了新的文献求助10
7秒前
彭于彦祖完成签到,获得积分0
7秒前
白白完成签到,获得积分10
8秒前
昏睡的乌冬面完成签到 ,获得积分10
8秒前
Candy发布了新的文献求助10
8秒前
prawn218完成签到,获得积分10
11秒前
11秒前
12秒前
不配.应助王栋采纳,获得10
13秒前
linliqing完成签到,获得积分10
13秒前
白白发布了新的文献求助10
13秒前
cbp560完成签到,获得积分10
15秒前
15秒前
CodeCraft应助早期早睡采纳,获得10
15秒前
穆紫应助Liu采纳,获得10
16秒前
16秒前
英俊的铭应助一头小飞猪采纳,获得10
17秒前
现实的白安完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
乖乖羊完成签到 ,获得积分10
22秒前
科研通AI2S应助zhangjian采纳,获得10
23秒前
ypppp完成签到,获得积分10
23秒前
23秒前
23秒前
25秒前
25秒前
ypppp发布了新的文献求助10
26秒前
XY完成签到,获得积分10
26秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176679
求助须知:如何正确求助?哪些是违规求助? 2827965
关于积分的说明 7964255
捐赠科研通 2488883
什么是DOI,文献DOI怎么找? 1326711
科研通“疑难数据库(出版商)”最低求助积分说明 635035
版权声明 602837