Target Classification in Unattended Ground Sensors With a Two-Stream Convolutional Network

计算机科学 过度拟合 光谱图 模式识别(心理学) 人工智能 信号(编程语言) 卷积神经网络 频道(广播) 语音识别 深度学习 人工神经网络 计算机网络 程序设计语言
作者
Yanling Qian,Hongying Tang,Yue Ran,Baoqing Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (4): 3747-3755 被引量:2
标识
DOI:10.1109/jsen.2022.3226466
摘要

Field motion target classification is the classification of ground motion targets such as personnel, wheeled, and tracked vehicles. The common classification methods are to use a single signal such as acoustic or seismic signal as input, which extracts less in-depth information than multimodal. In order to improve the accuracy of field target classification and recognition, an acoustic–seismic multimodal fusion network model with two-stream networks, i.e., WaveNet based on the raw audio and LMNet based on logmel spectrogram, is proposed. This article first introduces asymmetric convolution to extract time–frequency information separately and designs a temporal attention module to enable the network to make full use of the relevant temporal information in different channels. Then, the proposed network is used to extract and fuse the depth features of the four-channel acoustic signal and the single-channel seismic signal to obtain the final target classification results. Meanwhile, a data enhancement scheme is explored in order to avoid the possible overfitting caused by the limited training data. Notably, the model achieves 86.07%, 92.56%, and 98.08% classification accuracy on the seismic, acoustic, and acoustic–seismic datasets, respectively, and the classification accuracy of the multimodal model is significantly higher than that of the unimodal model. The ablation study shows that the classification accuracy of the framework is improved by 0.62–6.83% compared to the pure nets. Compared with existing deep-learning models, the best result of multimodal model demonstrates a relative improvement of 2.05%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwy109发布了新的文献求助10
刚刚
英姑应助钱罐罐采纳,获得10
刚刚
东耦完成签到,获得积分10
8秒前
打打应助Kris采纳,获得10
10秒前
10秒前
11秒前
情怀应助超级的鹅采纳,获得10
11秒前
11秒前
战斗暴龙兽完成签到,获得积分10
12秒前
12秒前
isojso完成签到,获得积分10
12秒前
12秒前
有魅力乌完成签到,获得积分10
12秒前
14秒前
15秒前
Lily发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
fhh完成签到,获得积分20
22秒前
23秒前
24秒前
慕青应助执着又蓝采纳,获得10
24秒前
123完成签到,获得积分10
24秒前
isojso发布了新的文献求助10
25秒前
fhh发布了新的文献求助10
25秒前
你可真下饭完成签到 ,获得积分10
26秒前
27秒前
行走的绅士完成签到,获得积分10
28秒前
钱罐罐完成签到 ,获得积分10
30秒前
Owen应助anna采纳,获得10
32秒前
Liufgui应助我不吃胡萝卜采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
科研通AI5应助整齐百褶裙采纳,获得10
34秒前
42秒前
第三人称的自己完成签到,获得积分10
43秒前
48秒前
49秒前
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068