Spin-State Regulation of Nickel Cobalt Spinel toward Enhancing the Electron Transfer Process of Oxygen Redox Reactions in Lithium–Oxygen Batteries

氧化还原 化学 电子转移 电催化剂 尖晶石 氧气 电化学 析氧 未成对电子 自旋极化 无机化学 电子 激进的 材料科学 光化学 物理化学 电极 有机化学 冶金 物理 量子力学
作者
Xiaojuan Wen,Long‐Fei Ren,Dayue Du,Yushan Yan,Haoyang Xu,Ting Zeng,Guilei Tian,Xinxiang Wang,Sheng Liu,Chaozhu Shu
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (1): 735-745 被引量:7
标识
DOI:10.1021/acs.energyfuels.2c03498
摘要

The development of a high-energy-density lithium–oxygen (Li–O2) battery is mainly determined by highly efficient electrocatalysts with excellent activity and stability, facilitating reversible oxygen redox reactions. Engineering the electron spin state provides a novel strategy to enhance the electrocatalytic activity of electrode materials. In this work, sulfur vacancy-enriched spinel NiCo2S4 (Vs-NiCo2S4) with high spin polarization is designed as an effective electrocatalyst for high-performance Li–O2 batteries. Subtle lattice distortion is induced by sulfur vacancy in spinel Vs-NiCo2S4, which strongly contributes to the formation of high spin states of Co3+ (HS, t2g4eg2) from the low spin states of Co3+ (LS, t2g6eg0) at active octahedral sites. The electron transitions of Co3+ from low to high spin enable the increase of the spin polarization and produce abundant unpaired electrons in the 3d orbital of Co3+, enhancing the adsorption of oxygen intermediates and boosting the electron transfer process of oxygen redox reactions. Density functional theory calculations indicate that the spin magnetic moment of Co3+ in Vs-NiCo2S4 is raised in comparison to that in NiCo2S4, which improves the catalytic activity of the material via lowering the energy barrier for electron transfer. Experimentally, Vs-NiCo2S4-based Li–O2 batteries exhibit a large specific capacity of 8707.0 mAh g–1 and long cycling life of 487 h. Furthermore, in situ differential electrochemical mass spectrometry results show that the ratio of electron to oxygen during oxygen redox reactions is close to 2, demonstrating the favorable formation and decomposition of Li2O2 on Vs-NiCo2S4 in a Li–O2 battery. This work presents a powerful strategy to rationally design efficient electrocatalysts via spin engineering to boost oxygen redox reaction kinetics in Li–O2 batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清爽忆山发布了新的文献求助10
1秒前
睡觉晒太阳完成签到,获得积分10
1秒前
andy完成签到,获得积分10
1秒前
1秒前
Itachi12138完成签到,获得积分10
1秒前
CipherSage应助蓝莓松饼采纳,获得10
1秒前
1秒前
团团完成签到,获得积分10
1秒前
追寻的易烟完成签到,获得积分10
1秒前
snow完成签到,获得积分10
2秒前
2秒前
2秒前
1111完成签到,获得积分20
3秒前
爆米花应助笑点低蜜蜂采纳,获得10
3秒前
橘子味汽水完成签到 ,获得积分10
3秒前
Victor陈完成签到,获得积分10
3秒前
3秒前
seed85完成签到,获得积分10
3秒前
最初完成签到,获得积分20
4秒前
Hello应助Chem is try采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
4秒前
5秒前
落寞白曼完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
别让我误会完成签到 ,获得积分10
8秒前
8秒前
KK发布了新的文献求助30
8秒前
娃娃完成签到 ,获得积分20
8秒前
科研通AI5应助结实的冰真采纳,获得30
8秒前
冷静的小熊猫完成签到,获得积分10
9秒前
Donnie完成签到,获得积分10
9秒前
若尘完成签到,获得积分10
10秒前
椰子完成签到 ,获得积分10
10秒前
10秒前
细腻涵菱完成签到,获得积分10
11秒前
吕耀炜完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672