Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method

沸点 汽化焓 人工神经网络 群贡献法 热力学 熔点 聚变焓 热容 计算机科学 偏心因子 多层感知器 化学 生物系统 机器学习 有机化学 物理 相平衡 生物 相(物质)
作者
Ignacio Pérez‐Correa,Pablo Giunta,Javier A. Francesconi,Fernando Mariño
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (8): 4771-4783 被引量:2
标识
DOI:10.1002/cjce.24788
摘要

Abstract In the development and optimization of chemical processes involving the selection of organic fluids, knowledge of the physical properties of compounds is vital. In many cases, it is complex to find experimental measurements for all substances, so it becomes necessary to have a tool to predict properties based on the characteristics of the molecule. One of the most extensively used methods in the literature is the estimation by contribution of functional groups, where properties are calculated using the constituent elements of the molecule. There are several models published in the literature, but they fail to represent a wide variety of compounds with high accuracy and simultaneously maintain a low computational complexity. The aim of this work is to develop a prediction model for eight thermodynamic properties (melting temperature, boiling temperature, critical pressure, critical temperature, critical volume, enthalpy of vaporization, enthalpy of fusion, and enthalpy of gas formation) based on the group contribution methodology by implementing a multilayer perceptron. Here, 2736 substances were used to train the neural network, whose prediction capacity was compared with other reference models available in the literature. The proposed model presents errors ranging from 1% to 5% for the different properties (except for the melting point), which improves the reference models with errors in the range of 3%–30%. Nevertheless, a difficulty in the prediction of the melting point is detected, which could represent an inherent hindrance to this methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
宫旭尧发布了新的文献求助10
2秒前
明天见发布了新的文献求助10
2秒前
liuxinyu发布了新的文献求助10
2秒前
无心的芸完成签到 ,获得积分20
2秒前
3秒前
maliao发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
麻辣修勾完成签到 ,获得积分10
4秒前
5秒前
i-bear发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
年轻半雪发布了新的文献求助10
5秒前
852应助直率新柔采纳,获得10
6秒前
7秒前
智博36发布了新的文献求助10
7秒前
wyx完成签到,获得积分10
7秒前
Ftucyctucutct完成签到,获得积分10
7秒前
ffan发布了新的文献求助10
8秒前
桐桐应助xin采纳,获得10
8秒前
8秒前
学术小子发布了新的文献求助10
8秒前
9秒前
俊逸绝音完成签到,获得积分10
9秒前
hl268完成签到,获得积分10
9秒前
WJJ发布了新的文献求助10
10秒前
科研通AI2S应助孤独的雪一采纳,获得10
10秒前
上官若男应助孙湛舒采纳,获得30
11秒前
11秒前
chenyuyuan完成签到,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
tt完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867581
求助须知:如何正确求助?哪些是违规求助? 4159580
关于积分的说明 12898265
捐赠科研通 3913603
什么是DOI,文献DOI怎么找? 2149390
邀请新用户注册赠送积分活动 1167824
关于科研通互助平台的介绍 1070259