亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method

沸点 汽化焓 人工神经网络 群贡献法 热力学 熔点 聚变焓 热容 计算机科学 偏心因子 多层感知器 化学 生物系统 机器学习 有机化学 物理 相平衡 生物 相(物质)
作者
Ignacio Pérez‐Correa,Pablo Giunta,Javier A. Francesconi,Fernando Mariño
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (8): 4771-4783 被引量:2
标识
DOI:10.1002/cjce.24788
摘要

Abstract In the development and optimization of chemical processes involving the selection of organic fluids, knowledge of the physical properties of compounds is vital. In many cases, it is complex to find experimental measurements for all substances, so it becomes necessary to have a tool to predict properties based on the characteristics of the molecule. One of the most extensively used methods in the literature is the estimation by contribution of functional groups, where properties are calculated using the constituent elements of the molecule. There are several models published in the literature, but they fail to represent a wide variety of compounds with high accuracy and simultaneously maintain a low computational complexity. The aim of this work is to develop a prediction model for eight thermodynamic properties (melting temperature, boiling temperature, critical pressure, critical temperature, critical volume, enthalpy of vaporization, enthalpy of fusion, and enthalpy of gas formation) based on the group contribution methodology by implementing a multilayer perceptron. Here, 2736 substances were used to train the neural network, whose prediction capacity was compared with other reference models available in the literature. The proposed model presents errors ranging from 1% to 5% for the different properties (except for the melting point), which improves the reference models with errors in the range of 3%–30%. Nevertheless, a difficulty in the prediction of the melting point is detected, which could represent an inherent hindrance to this methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
20秒前
在水一方应助科研通管家采纳,获得10
58秒前
小二郎应助科研通管家采纳,获得10
58秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Jasper应助CC采纳,获得10
2分钟前
Zhaoyli发布了新的文献求助10
2分钟前
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
会会完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
yys10l完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
QCB完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
NexusExplorer应助契合采纳,获得10
5分钟前
5分钟前
契合发布了新的文献求助10
5分钟前
5分钟前
6分钟前
hdnej发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756