Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method

沸点 汽化焓 人工神经网络 群贡献法 热力学 熔点 聚变焓 热容 计算机科学 偏心因子 多层感知器 化学 生物系统 机器学习 有机化学 物理 相平衡 生物 相(物质)
作者
Ignacio Pérez‐Correa,Pablo Giunta,Javier A. Francesconi,Fernando Mariño
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (8): 4771-4783 被引量:2
标识
DOI:10.1002/cjce.24788
摘要

Abstract In the development and optimization of chemical processes involving the selection of organic fluids, knowledge of the physical properties of compounds is vital. In many cases, it is complex to find experimental measurements for all substances, so it becomes necessary to have a tool to predict properties based on the characteristics of the molecule. One of the most extensively used methods in the literature is the estimation by contribution of functional groups, where properties are calculated using the constituent elements of the molecule. There are several models published in the literature, but they fail to represent a wide variety of compounds with high accuracy and simultaneously maintain a low computational complexity. The aim of this work is to develop a prediction model for eight thermodynamic properties (melting temperature, boiling temperature, critical pressure, critical temperature, critical volume, enthalpy of vaporization, enthalpy of fusion, and enthalpy of gas formation) based on the group contribution methodology by implementing a multilayer perceptron. Here, 2736 substances were used to train the neural network, whose prediction capacity was compared with other reference models available in the literature. The proposed model presents errors ranging from 1% to 5% for the different properties (except for the melting point), which improves the reference models with errors in the range of 3%–30%. Nevertheless, a difficulty in the prediction of the melting point is detected, which could represent an inherent hindrance to this methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助10
刚刚
刚刚
上官若男应助小徐采纳,获得10
刚刚
深情的嘉熙完成签到,获得积分10
1秒前
科研渣渣完成签到,获得积分10
2秒前
望仔完成签到 ,获得积分10
2秒前
叁壹粑粑发布了新的文献求助10
2秒前
NexusExplorer应助hob采纳,获得10
3秒前
十六发布了新的文献求助10
3秒前
好了完成签到 ,获得积分20
4秒前
deityxq发布了新的文献求助10
4秒前
研友_LOK59L发布了新的文献求助10
4秒前
paulin完成签到,获得积分10
4秒前
lming完成签到,获得积分10
5秒前
6秒前
6秒前
上官若男应助自然剑采纳,获得10
7秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
柴桑青木应助科研通管家采纳,获得30
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Yuan发布了新的文献求助10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
RAmos_1982完成签到,获得积分10
10秒前
小米应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
sun完成签到,获得积分10
12秒前
研友_LOK59L完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538024
求助须知:如何正确求助?哪些是违规求助? 3972771
关于积分的说明 12306684
捐赠科研通 3639502
什么是DOI,文献DOI怎么找? 2003922
邀请新用户注册赠送积分活动 1039325
科研通“疑难数据库(出版商)”最低求助积分说明 928666