Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method

沸点 汽化焓 人工神经网络 群贡献法 热力学 熔点 聚变焓 热容 计算机科学 偏心因子 多层感知器 化学 生物系统 机器学习 有机化学 物理 相平衡 生物 相(物质)
作者
Ignacio Pérez‐Correa,Pablo Giunta,Javier A. Francesconi,Fernando Mariño
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (8): 4771-4783 被引量:2
标识
DOI:10.1002/cjce.24788
摘要

Abstract In the development and optimization of chemical processes involving the selection of organic fluids, knowledge of the physical properties of compounds is vital. In many cases, it is complex to find experimental measurements for all substances, so it becomes necessary to have a tool to predict properties based on the characteristics of the molecule. One of the most extensively used methods in the literature is the estimation by contribution of functional groups, where properties are calculated using the constituent elements of the molecule. There are several models published in the literature, but they fail to represent a wide variety of compounds with high accuracy and simultaneously maintain a low computational complexity. The aim of this work is to develop a prediction model for eight thermodynamic properties (melting temperature, boiling temperature, critical pressure, critical temperature, critical volume, enthalpy of vaporization, enthalpy of fusion, and enthalpy of gas formation) based on the group contribution methodology by implementing a multilayer perceptron. Here, 2736 substances were used to train the neural network, whose prediction capacity was compared with other reference models available in the literature. The proposed model presents errors ranging from 1% to 5% for the different properties (except for the melting point), which improves the reference models with errors in the range of 3%–30%. Nevertheless, a difficulty in the prediction of the melting point is detected, which could represent an inherent hindrance to this methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的夜梦完成签到 ,获得积分10
刚刚
刚刚
烟花应助橘落采纳,获得10
刚刚
刚刚
刚刚
1秒前
WoeL.Aug.11发布了新的文献求助10
1秒前
纷雪发布了新的文献求助10
1秒前
1秒前
受伤芝麻完成签到,获得积分10
1秒前
FN关注了科研通微信公众号
2秒前
ygm发布了新的文献求助20
2秒前
大个应助一水独流采纳,获得10
2秒前
derek10086完成签到,获得积分10
2秒前
133发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
i的问题发布了新的文献求助10
4秒前
再沉默完成签到,获得积分10
4秒前
祺君发布了新的文献求助10
5秒前
5秒前
Pzuzu完成签到,获得积分10
6秒前
结实白柏完成签到,获得积分10
7秒前
Owen应助zss采纳,获得10
7秒前
7秒前
英姑应助清欢采纳,获得10
7秒前
在水一方应助清欢采纳,获得10
7秒前
7秒前
7秒前
8秒前
段凯发布了新的文献求助10
8秒前
Beatrice发布了新的文献求助20
8秒前
纷雪完成签到,获得积分10
8秒前
暖阳发布了新的文献求助10
8秒前
笨笨慕山完成签到,获得积分10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369