A Declarative Metamorphic Testing Framework for Autonomous Driving

计算机科学 人工智能 集合(抽象数据类型) 语法 解析 领域(数学分析) 机器学习 自然语言处理 程序设计语言 数学 数学分析
作者
Yao Deng,Xi Zheng,Tianyi Zhang,Huai Liu,Guannan Lou,Miryung Kim,Tsong Yueh Chen
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (4): 1964-1982 被引量:15
标识
DOI:10.1109/tse.2022.3206427
摘要

Autonomous driving has gained much attention from both industry and academia. Currently, Deep Neural Networks (DNNs) are widely used for perception and control in autonomous driving. However, several fatal accidents caused by autonomous vehicles have raised serious safety concerns about autonomous driving models. Some recent studies have successfully used the metamorphic testing technique to detect thousands of potential issues in some popularly used autonomous driving models. However, prior study is limited to a small set of metamorphic relations, which do not reflect rich, real-world traffic scenarios and are also not customizable. This paper presents a novel declarative rule-based metamorphic testing framework called RMT . RMT provides a rule template with natural language syntax, allowing users to flexibly specify an enriched set of testing scenarios based on real-world traffic rules and domain knowledge. RMT automatically parses human-written rules to metamorphic relations using an NLP-based rule parser referring to an ontology list and generates test cases with a variety of image transformation engines. We evaluated RMT on three autonomous driving models. With an enriched set of metamorphic relations, RMT detected a significant number of abnormal model predictions that were not detected by prior work. Through a large-scale human study on Amazon Mechanical Turk, we further confirmed the authenticity of test cases generated by RMT and the validity of detected abnormal model predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不安慕蕊完成签到,获得积分10
刚刚
激动的书南完成签到,获得积分10
刚刚
深情安青应助喜东采纳,获得10
刚刚
zengdan发布了新的文献求助10
1秒前
充电宝应助科研小白兔采纳,获得10
2秒前
LELE完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
卞卞发布了新的文献求助10
3秒前
3秒前
3秒前
JJJJccW完成签到,获得积分10
3秒前
3秒前
3秒前
安安完成签到 ,获得积分10
3秒前
Kenny完成签到,获得积分10
3秒前
科研通AI2S应助开心绿柳采纳,获得10
4秒前
5秒前
噗噗个噗完成签到,获得积分10
5秒前
sqf1209发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
Yolo完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
噗噗个噗发布了新的文献求助10
8秒前
兰亭序发布了新的文献求助10
8秒前
LiLi完成签到,获得积分10
8秒前
墨曦完成签到,获得积分10
8秒前
如意天荷完成签到,获得积分10
9秒前
科研通AI2S应助LELE采纳,获得10
9秒前
英俊的铭应助风趣夜云采纳,获得10
9秒前
尘闲完成签到,获得积分10
9秒前
joiawhrfoiwea发布了新的文献求助10
10秒前
10秒前
10秒前
Cynthia完成签到,获得积分10
10秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449