Detection of maize seed germination rate based on improved locally linear embedding

降维 数学 欧几里德距离 相似性(几何) 模式识别(心理学) 维数(图论) 支持向量机 公制(单位) 人工智能 嵌入 统计 计算机科学 工程类 运营管理 图像(数学) 纯数学
作者
Shu Liu,Zhengguang Chen,Feng Jiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107514-107514 被引量:10
标识
DOI:10.1016/j.compag.2022.107514
摘要

Locally linear embedding (LLE) is a nonlinear dimensionality reduction method, which has great advantages over linear dimensionality reduction methods. However, the traditional LLE takes the Euclidean distance as the distance measure, which is difficult to accurately reflect the spatial position relationship between the high-dimensional data of the near-infrared spectrum, resulting in a poor modeling effect. This paper tries to improve the LLE with different distance metric methods and proposes a rapid detection method for maize seed germination rate based on improved local linear embedding and near-infrared spectroscopy. In this paper, a total of 315 samples from 7 different types of maize seeds, purchased from the seed market, were adopted as the research object. We performed artificial aging tests with 8 different gradients (from 0d to 7d with interval of 1d) on them and completed the germination rate test after collecting the near-infrared spectral data for each sample. The Monte Carlo cross-validation (MCCV) algorithm, combined with PLSR and SVM, was used to remove abnormal samples from the spectral and germination rate data. And then, for comparison, we used several different improvement strategies for LLE (traditional Euclidean distance, Manhattan distance, Chebyshev distance, Correlation coefficient, and Cosine similarity) to reduce the spectral data dimension and established PLS and SVM germination rate prediction models. We compared the prediction effects of different models to explore the optimal improvement strategy of LLE dimension reduction distance measurement. The results showed that the cosine similarity was the best improvement strategy under the same modeling method. The R2 of the LLE_ cos-PLS model's test set can reach 0.8384, and the R2 of the LLE_cos-SVM model's test set can reach 0.8765. The results showed that the cosine similarity could better reflect the spatial distribution in the spectral data of aged maize seeds, and the precision of the model was higher after LLE_cos dimensionality reduction. Compared with the linear modeling method PLS, the nonlinear modeling method SVM is more suitable for predicting the germination rate of maize seeds. This study can provide a reference method for the quality inspection of other agricultural products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助aixue采纳,获得10
刚刚
1秒前
1秒前
新小pi完成签到,获得积分10
1秒前
勤恳冬萱应助daifei采纳,获得10
2秒前
在水一方应助九月三日采纳,获得10
2秒前
思源应助美好芳采纳,获得10
2秒前
ggyy发布了新的文献求助10
3秒前
3秒前
Ll发布了新的文献求助10
3秒前
三色发布了新的文献求助10
4秒前
白华苍松发布了新的文献求助20
4秒前
re6t5i8y完成签到,获得积分10
5秒前
骆驼牛子发布了新的文献求助10
5秒前
zhou完成签到,获得积分10
5秒前
zz关闭了zz文献求助
6秒前
浅浅殇完成签到,获得积分10
6秒前
7秒前
云飞扬完成签到,获得积分10
7秒前
大白完成签到,获得积分10
7秒前
不爱干饭发布了新的文献求助10
7秒前
fengfeng完成签到 ,获得积分10
7秒前
8秒前
勤奋千风完成签到 ,获得积分10
9秒前
海边听海完成签到 ,获得积分10
9秒前
赘婿应助Ken921319005采纳,获得50
10秒前
小城故事和冰雨完成签到,获得积分10
10秒前
11秒前
英俊的铭应助苦海采纳,获得10
11秒前
xianjingli发布了新的文献求助10
12秒前
无花果应助Ll采纳,获得10
12秒前
13秒前
燕无招发布了新的文献求助100
13秒前
科研小白白完成签到,获得积分10
14秒前
dd完成签到,获得积分10
15秒前
15秒前
小蘑菇应助孔雀翎采纳,获得10
17秒前
韦凌青发布了新的文献求助10
18秒前
www发布了新的文献求助10
18秒前
19秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587