超级电容器
材料科学
纳米技术
纳米线
纳米结构
储能
电化学
纳米尺度
多孔性
沉积(地质)
电极
复合材料
化学
物理化学
功率(物理)
物理
量子力学
古生物学
沉积物
生物
作者
Sepideh Behboudikhiavi,Géraldine Chanteux,Binson Babu,Sébastien Faniel,Florent Marlec,Kévin Robert,Delphine Magnin,Fabio Lucaccioni,Joel Ojonugwa Omale,Petru Apostol,L. Piraux,Christophe Lethien,Alexandru Vlad
出处
期刊:Small
[Wiley]
日期:2024-05-02
被引量:4
标识
DOI:10.1002/smll.202401509
摘要
Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.
科研通智能强力驱动
Strongly Powered by AbleSci AI