Learning Domain Invariant Features for Unsupervised Indoor Depth Estimation Adaptation

鉴别器 计算机科学 人工智能 单眼 特征(语言学) 模式识别(心理学) 不变(物理) 注释 估计员 特征学习 计算机视觉 数学 统计 哲学 探测器 电信 语言学 数学物理
作者
Jiehua Zhang,Liang Li,Chenggang Yan,Zhan Wang,Changliang Xu,Jiyong Zhang,Chuqiao Chen
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3672397
摘要

Predicting depth maps from monocular images has made an impressive performance in the past years. However, most depth estimation methods are trained with paired image-depth map data or multi-view images (e.g., stereo pair and monocular sequence), which suffer from expensive annotation costs and poor transferability. Although unsupervised domain adaptation methods are introduced to mitigate the reliance on annotated data, rare works focus on the unsupervised cross-scenario indoor monocular depth estimation. In this paper, we propose to study the generalization of depth estimation models across different indoor scenarios in an adversarial-based domain adaptation paradigm. Concretely, a domain discriminator is designed for discriminating the representation from source and target domains, while the feature extractor aims to confuse the domain discriminator by capturing domain-invariant features. Further, we reconstruct depth maps from latent representations with the supervision of labeled source data. As a result, the feature extractor learned features possess the merit of both domain-invariant and low source risk, and the depth estimator can deal with the domain shift between source and target domains. We conduct the cross-scenario and cross-dataset experiments on the ScanNet and NYU-Depth-v2 datasets to verify the effectiveness of our method and achieve impressive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适苗条完成签到,获得积分10
刚刚
Zn应助开水泡饼采纳,获得10
刚刚
科目三应助Liu采纳,获得10
1秒前
1秒前
eating完成签到,获得积分10
1秒前
李双艳完成签到,获得积分10
1秒前
英姑应助科研混子采纳,获得10
1秒前
li完成签到,获得积分10
2秒前
Hungrylunch应助woshiwuziq采纳,获得20
3秒前
合适苗条发布了新的文献求助10
3秒前
安静听白发布了新的文献求助10
3秒前
krystal发布了新的文献求助10
3秒前
4秒前
15122303完成签到,获得积分10
4秒前
lht完成签到 ,获得积分10
5秒前
传奇3应助纯真电源采纳,获得10
5秒前
环走鱼尾纹完成签到 ,获得积分10
5秒前
xiuxiu_27发布了新的文献求助10
6秒前
222完成签到,获得积分10
6秒前
zyz1132完成签到,获得积分10
6秒前
何处芳歇完成签到,获得积分10
7秒前
7秒前
LXYang完成签到,获得积分10
7秒前
7秒前
LL完成签到,获得积分10
7秒前
8秒前
8秒前
十月发布了新的文献求助20
9秒前
9秒前
针地很不戳完成签到,获得积分10
9秒前
10秒前
奋斗金连完成签到,获得积分10
10秒前
科研菜鸟完成签到,获得积分10
10秒前
圈圈发布了新的文献求助10
11秒前
zhanglh完成签到 ,获得积分10
11秒前
11秒前
Liu完成签到,获得积分10
11秒前
啊大大哇完成签到,获得积分10
11秒前
一平驳回了HEIKU应助
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678