Stacking and ridge regression-based spectral ensemble preprocessing method and its application in near-infrared spectral analysis

化学 堆积 数据预处理 预处理器 集成学习 回归 数据挖掘 模式识别(心理学) 人工智能 统计 有机化学 数学 计算机科学
作者
Haowen Huang,Zile Fang,Yuelong Xu,Guosheng Lu,Can Feng,Min Zeng,Jiaju Tian,Yongfu Ping,Zhuolin Han,Zhigang Zhao
出处
期刊:Talanta [Elsevier BV]
卷期号:276: 126242-126242 被引量:4
标识
DOI:10.1016/j.talanta.2024.126242
摘要

Spectral preprocessing techniques can, to a certain extent, eliminate irrelevant information, such as current noise and stray light from spectral data, thereby enhancing the performance of prediction models. However, current preprocessing techniques mostly attempt to find the best single preprocessing method or their combination, overlooking the complementary information among different preprocessing methods. These preprocessing techniques fail to maximize the utilization of useful information in spectral data and restrict the performance of prediction models. This study proposed a spectral ensemble preprocessing method based on the rapidly developing ensemble learning methods in recent years and the ridge regression (RR) model, named stacking preprocessing ridge regression (SPRR), to address the aforementioned issues. Different from conventional ensemble learning methods, the proposed SPRR method applied multiple different preprocessing techniques to the original spectral data, generating multiple preprocessed datasets. These datasets were then individually inputted into RR base models for training. Ultimately, RR still served as the meta-model, integrating the output results of each RR base model through stacking. This approach not only produced diversity in base models but also achieved higher accuracy and lower computational complexity by using a single type of base model. On the apple spectral dataset collected by our team, correlation analysis showed significant complementary information among the data produced by different preprocessing techniques. This provided robust theoretical support for the proposed SPRR method. By introducing the currently popular averaging ensemble preprocessing method in a comparative experiment, the results of applying the proposed SPRR method to six datasets (apple, meat, wheat, olive oil, tablet, and corn) demonstrated that compared to the single preprocessing method and averaging ensemble preprocessing method, SPRR yielded the best accuracy and reliability for all six datasets. Furthermore, under the same conditions of the training and test datasets, the proposed SPRR method demonstrated better performance than the four commonly used ensemble preprocessing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mini昕发布了新的文献求助10
2秒前
木易发布了新的文献求助10
2秒前
2秒前
鸭子发布了新的文献求助10
3秒前
顾矜应助AAAsun采纳,获得30
3秒前
我没钱发布了新的文献求助10
3秒前
lulu发布了新的文献求助10
4秒前
kang完成签到,获得积分10
4秒前
LY发布了新的文献求助10
4秒前
烟花应助积极巨人采纳,获得10
5秒前
CodeCraft应助NancyDee采纳,获得10
5秒前
星辰完成签到,获得积分10
5秒前
5秒前
凉白开完成签到,获得积分10
6秒前
阿敬完成签到,获得积分10
6秒前
科研通AI2S应助dll采纳,获得10
7秒前
7秒前
AILOLIHH发布了新的文献求助10
8秒前
lwl发布了新的文献求助10
9秒前
完美菲鹰发布了新的文献求助20
10秒前
孟祥勤发布了新的文献求助10
10秒前
夜神月发布了新的文献求助10
10秒前
10秒前
研友_5Y9X75完成签到,获得积分10
10秒前
慕青应助落泺采纳,获得10
12秒前
zy发布了新的文献求助10
13秒前
小小科研牛马完成签到 ,获得积分10
13秒前
14秒前
研友_5Y9X75发布了新的文献求助10
14秒前
黄cc应助别急采纳,获得10
15秒前
汤糖发布了新的文献求助10
15秒前
15秒前
呆呆完成签到,获得积分10
16秒前
16秒前
木易完成签到,获得积分10
18秒前
科研通AI6应助fh采纳,获得30
19秒前
雪白的雪完成签到,获得积分10
19秒前
wanci应助xiaopan采纳,获得10
19秒前
dll发布了新的文献求助10
20秒前
科研通AI5应助小海采纳,获得10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5216716
求助须知:如何正确求助?哪些是违规求助? 4391521
关于积分的说明 13672781
捐赠科研通 4253605
什么是DOI,文献DOI怎么找? 2333898
邀请新用户注册赠送积分活动 1331528
关于科研通互助平台的介绍 1285277