Stacking and ridge regression-based spectral ensemble preprocessing method and its application in near-infrared spectral analysis

化学 堆积 数据预处理 预处理器 集成学习 回归 数据挖掘 模式识别(心理学) 人工智能 统计 有机化学 数学 计算机科学
作者
Haowen Huang,Zile Fang,Yuelong Xu,Guosheng Lu,Can Feng,Min Zeng,Jiaju Tian,Yongfu Ping,Zhuolin Han,Zhigang Zhao
出处
期刊:Talanta [Elsevier]
卷期号:276: 126242-126242 被引量:25
标识
DOI:10.1016/j.talanta.2024.126242
摘要

Spectral preprocessing techniques can, to a certain extent, eliminate irrelevant information, such as current noise and stray light from spectral data, thereby enhancing the performance of prediction models. However, current preprocessing techniques mostly attempt to find the best single preprocessing method or their combination, overlooking the complementary information among different preprocessing methods. These preprocessing techniques fail to maximize the utilization of useful information in spectral data and restrict the performance of prediction models. This study proposed a spectral ensemble preprocessing method based on the rapidly developing ensemble learning methods in recent years and the ridge regression (RR) model, named stacking preprocessing ridge regression (SPRR), to address the aforementioned issues. Different from conventional ensemble learning methods, the proposed SPRR method applied multiple different preprocessing techniques to the original spectral data, generating multiple preprocessed datasets. These datasets were then individually inputted into RR base models for training. Ultimately, RR still served as the meta-model, integrating the output results of each RR base model through stacking. This approach not only produced diversity in base models but also achieved higher accuracy and lower computational complexity by using a single type of base model. On the apple spectral dataset collected by our team, correlation analysis showed significant complementary information among the data produced by different preprocessing techniques. This provided robust theoretical support for the proposed SPRR method. By introducing the currently popular averaging ensemble preprocessing method in a comparative experiment, the results of applying the proposed SPRR method to six datasets (apple, meat, wheat, olive oil, tablet, and corn) demonstrated that compared to the single preprocessing method and averaging ensemble preprocessing method, SPRR yielded the best accuracy and reliability for all six datasets. Furthermore, under the same conditions of the training and test datasets, the proposed SPRR method demonstrated better performance than the four commonly used ensemble preprocessing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scirubbish完成签到,获得积分10
刚刚
希望天下0贩的0应助zt采纳,获得10
1秒前
蔡鑫发布了新的文献求助30
2秒前
wind2631发布了新的文献求助10
2秒前
朱宸发布了新的文献求助10
3秒前
12458完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Mona完成签到 ,获得积分10
5秒前
高高烙完成签到,获得积分10
6秒前
7秒前
贤惠的醉蝶完成签到,获得积分20
7秒前
晓珈越完成签到,获得积分10
7秒前
斯文败类应助林大大采纳,获得10
8秒前
8秒前
zwy应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
葡萄成熟完成签到,获得积分10
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
贝贝应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
大咸鱼发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
CUIYU应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
丰知然应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329