Stacking and ridge regression-based spectral ensemble preprocessing method and its application in near-infrared spectral analysis

化学 堆积 数据预处理 预处理器 集成学习 回归 数据挖掘 模式识别(心理学) 人工智能 统计 有机化学 数学 计算机科学
作者
Haowen Huang,Zile Fang,Yuelong Xu,Guosheng Lu,Can Feng,Min Zeng,Jiaju Tian,Yongfu Ping,Zhuolin Han,Zhigang Zhao
出处
期刊:Talanta [Elsevier]
卷期号:276: 126242-126242 被引量:4
标识
DOI:10.1016/j.talanta.2024.126242
摘要

Spectral preprocessing techniques can, to a certain extent, eliminate irrelevant information, such as current noise and stray light from spectral data, thereby enhancing the performance of prediction models. However, current preprocessing techniques mostly attempt to find the best single preprocessing method or their combination, overlooking the complementary information among different preprocessing methods. These preprocessing techniques fail to maximize the utilization of useful information in spectral data and restrict the performance of prediction models. This study proposed a spectral ensemble preprocessing method based on the rapidly developing ensemble learning methods in recent years and the ridge regression (RR) model, named stacking preprocessing ridge regression (SPRR), to address the aforementioned issues. Different from conventional ensemble learning methods, the proposed SPRR method applied multiple different preprocessing techniques to the original spectral data, generating multiple preprocessed datasets. These datasets were then individually inputted into RR base models for training. Ultimately, RR still served as the meta-model, integrating the output results of each RR base model through stacking. This approach not only produced diversity in base models but also achieved higher accuracy and lower computational complexity by using a single type of base model. On the apple spectral dataset collected by our team, correlation analysis showed significant complementary information among the data produced by different preprocessing techniques. This provided robust theoretical support for the proposed SPRR method. By introducing the currently popular averaging ensemble preprocessing method in a comparative experiment, the results of applying the proposed SPRR method to six datasets (apple, meat, wheat, olive oil, tablet, and corn) demonstrated that compared to the single preprocessing method and averaging ensemble preprocessing method, SPRR yielded the best accuracy and reliability for all six datasets. Furthermore, under the same conditions of the training and test datasets, the proposed SPRR method demonstrated better performance than the four commonly used ensemble preprocessing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
哭泣恋风完成签到 ,获得积分10
2秒前
zhizhzihzih完成签到,获得积分10
2秒前
2秒前
2568269431完成签到 ,获得积分10
3秒前
panzer发布了新的文献求助10
3秒前
3秒前
4秒前
smile发布了新的文献求助10
4秒前
5秒前
酷炫蚂蚁发布了新的文献求助10
5秒前
5秒前
Andy_Cheung完成签到,获得积分10
5秒前
feng完成签到,获得积分10
6秒前
maomao发布了新的文献求助10
6秒前
leena完成签到,获得积分10
6秒前
6秒前
青衣北风发布了新的文献求助10
7秒前
feng发布了新的文献求助10
7秒前
guygun发布了新的文献求助10
10秒前
小灰灰完成签到,获得积分10
11秒前
11秒前
海鸥海鸥发布了新的文献求助10
12秒前
青衣北风完成签到,获得积分10
12秒前
14秒前
MasterE完成签到,获得积分10
15秒前
我的小伙伴应助feng采纳,获得10
15秒前
善学以致用应助feng采纳,获得10
15秒前
16秒前
16秒前
gaoww发布了新的文献求助10
16秒前
小二发布了新的文献求助10
20秒前
solobang发布了新的文献求助10
21秒前
CodeCraft应助Jocelyn7采纳,获得10
21秒前
秋之月完成签到,获得积分10
21秒前
22秒前
cheche关注了科研通微信公众号
22秒前
23秒前
科研小民工应助kento采纳,获得50
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824