亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stacking and ridge regression-based spectral ensemble preprocessing method and its application in near-infrared spectral analysis

化学 堆积 数据预处理 预处理器 集成学习 回归 数据挖掘 模式识别(心理学) 人工智能 统计 有机化学 数学 计算机科学
作者
Haowen Huang,Zile Fang,Yuelong Xu,Guosheng Lu,Can Feng,Min Zeng,Jiaju Tian,Yongfu Ping,Zhuolin Han,Zhigang Zhao
出处
期刊:Talanta [Elsevier]
卷期号:276: 126242-126242 被引量:25
标识
DOI:10.1016/j.talanta.2024.126242
摘要

Spectral preprocessing techniques can, to a certain extent, eliminate irrelevant information, such as current noise and stray light from spectral data, thereby enhancing the performance of prediction models. However, current preprocessing techniques mostly attempt to find the best single preprocessing method or their combination, overlooking the complementary information among different preprocessing methods. These preprocessing techniques fail to maximize the utilization of useful information in spectral data and restrict the performance of prediction models. This study proposed a spectral ensemble preprocessing method based on the rapidly developing ensemble learning methods in recent years and the ridge regression (RR) model, named stacking preprocessing ridge regression (SPRR), to address the aforementioned issues. Different from conventional ensemble learning methods, the proposed SPRR method applied multiple different preprocessing techniques to the original spectral data, generating multiple preprocessed datasets. These datasets were then individually inputted into RR base models for training. Ultimately, RR still served as the meta-model, integrating the output results of each RR base model through stacking. This approach not only produced diversity in base models but also achieved higher accuracy and lower computational complexity by using a single type of base model. On the apple spectral dataset collected by our team, correlation analysis showed significant complementary information among the data produced by different preprocessing techniques. This provided robust theoretical support for the proposed SPRR method. By introducing the currently popular averaging ensemble preprocessing method in a comparative experiment, the results of applying the proposed SPRR method to six datasets (apple, meat, wheat, olive oil, tablet, and corn) demonstrated that compared to the single preprocessing method and averaging ensemble preprocessing method, SPRR yielded the best accuracy and reliability for all six datasets. Furthermore, under the same conditions of the training and test datasets, the proposed SPRR method demonstrated better performance than the four commonly used ensemble preprocessing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助黑神白了采纳,获得20
2秒前
11秒前
Tanya完成签到 ,获得积分10
13秒前
卢雨生发布了新的文献求助10
16秒前
18秒前
今后应助跳跃的愫采纳,获得10
30秒前
38秒前
38秒前
npknpk发布了新的文献求助10
44秒前
Algernoon发布了新的文献求助10
46秒前
50秒前
SciGPT应助npknpk采纳,获得10
57秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
1分钟前
田田完成签到 ,获得积分10
1分钟前
npknpk完成签到,获得积分20
1分钟前
Algernoon完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
跳跃的愫发布了新的文献求助10
1分钟前
sys549发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助utopia采纳,获得10
1分钟前
Magic麦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
bzlish发布了新的文献求助10
1分钟前
黑神白了发布了新的文献求助20
1分钟前
科目三应助bzlish采纳,获得10
1分钟前
bzlish完成签到,获得积分10
1分钟前
1分钟前
1分钟前
utopia发布了新的文献求助10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642