Stacking and ridge regression-based spectral ensemble preprocessing method and its application in near-infrared spectral analysis

化学 堆积 数据预处理 预处理器 集成学习 回归 数据挖掘 模式识别(心理学) 人工智能 统计 有机化学 数学 计算机科学
作者
Haowen Huang,Zile Fang,Yuelong Xu,Guosheng Lu,Can Feng,Min Zeng,Jiaju Tian,Yongfu Ping,Zhuolin Han,Zhigang Zhao
出处
期刊:Talanta [Elsevier BV]
卷期号:276: 126242-126242 被引量:4
标识
DOI:10.1016/j.talanta.2024.126242
摘要

Spectral preprocessing techniques can, to a certain extent, eliminate irrelevant information, such as current noise and stray light from spectral data, thereby enhancing the performance of prediction models. However, current preprocessing techniques mostly attempt to find the best single preprocessing method or their combination, overlooking the complementary information among different preprocessing methods. These preprocessing techniques fail to maximize the utilization of useful information in spectral data and restrict the performance of prediction models. This study proposed a spectral ensemble preprocessing method based on the rapidly developing ensemble learning methods in recent years and the ridge regression (RR) model, named stacking preprocessing ridge regression (SPRR), to address the aforementioned issues. Different from conventional ensemble learning methods, the proposed SPRR method applied multiple different preprocessing techniques to the original spectral data, generating multiple preprocessed datasets. These datasets were then individually inputted into RR base models for training. Ultimately, RR still served as the meta-model, integrating the output results of each RR base model through stacking. This approach not only produced diversity in base models but also achieved higher accuracy and lower computational complexity by using a single type of base model. On the apple spectral dataset collected by our team, correlation analysis showed significant complementary information among the data produced by different preprocessing techniques. This provided robust theoretical support for the proposed SPRR method. By introducing the currently popular averaging ensemble preprocessing method in a comparative experiment, the results of applying the proposed SPRR method to six datasets (apple, meat, wheat, olive oil, tablet, and corn) demonstrated that compared to the single preprocessing method and averaging ensemble preprocessing method, SPRR yielded the best accuracy and reliability for all six datasets. Furthermore, under the same conditions of the training and test datasets, the proposed SPRR method demonstrated better performance than the four commonly used ensemble preprocessing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚强一刀发布了新的文献求助30
1秒前
1秒前
子车谷波发布了新的文献求助10
2秒前
3秒前
高兴梦竹发布了新的文献求助10
3秒前
4秒前
5秒前
齐静春发布了新的文献求助10
5秒前
李爱国应助小宇子采纳,获得10
5秒前
无限的山水完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
bkagyin应助skywet采纳,获得10
6秒前
026发布了新的文献求助10
8秒前
夕荀发布了新的文献求助10
9秒前
喜悦又菡发布了新的文献求助10
10秒前
情怀应助思芋奶糕采纳,获得10
11秒前
alan发布了新的文献求助10
11秒前
12秒前
wait发布了新的文献求助10
12秒前
12秒前
充电宝应助谨慎的凝丝采纳,获得10
13秒前
14秒前
木头马尾给Xx的求助进行了留言
14秒前
y741完成签到,获得积分10
14秒前
郭生发布了新的文献求助10
15秒前
浮游应助一只小熊猫采纳,获得10
15秒前
迷路旭发布了新的文献求助10
15秒前
ypeng完成签到,获得积分10
16秒前
16秒前
zheng完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助150
17秒前
18秒前
Hz完成签到,获得积分20
18秒前
20秒前
彭于晏应助SFAxzh采纳,获得10
20秒前
skywet发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896145
求助须知:如何正确求助?哪些是违规求助? 4177840
关于积分的说明 12969394
捐赠科研通 3941069
什么是DOI,文献DOI怎么找? 2162084
邀请新用户注册赠送积分活动 1180518
关于科研通互助平台的介绍 1086076