有限元法
材料科学
纳米复合材料
复合材料
聚合物
聚合物纳米复合材料
结构工程
工程类
作者
P. Gustin,J. Hasse,Timothy Steimle,Dhriti Nepal,Geoffrey J. Frank,Vikas Varshney
标识
DOI:10.1016/j.compositesb.2024.111689
摘要
The structural integrity of MXene and MXene-based materials is important across applications from sensors to energy storage. While MXene processing has received significant attention, its structural integrity for real-world applications remains challenging due to its flake-like structure. Here the mechanical response of layered MXene-polymer nanocomposites (MPC) with high MXene concentration (>70%) and bioinspired nacre-like brick-and-mortar architecture is investigated to offer insights for MPC design and processing. An automated finite element analysis (FEA) framework is developed to analyze MPC models with randomized geometries and multiple combinations of the parameter space. Specifically, the influence of concentration, aspect ratio (AR), flake thickness, flake distribution, and interfacial strength is investigated. The results reveal property trends such as increasing elastic modulus, strength, and toughness with increasing cohesive strength and concentration for lower AR (=40, 60) but a decreasing trend at higher AR of 75. Local structural features like flake distribution, overlapping MXene lengths, and interconnected polymers in adjacent layers was found a critical determinant of performance. For example, stronger cohesive interaction showed 6X high toughness (291 226 ) compared to weaker case (50 24 ), but the large scatter highlighted the impact of microstructural features. The results are compared and validated with theoretical, computational, and experimental work. The findings provide valuable guidance for optimizing MPC design and their processing. Finally, the automation of the framework allows the design to be extended beyond the current system and chosen material combinations.
科研通智能强力驱动
Strongly Powered by AbleSci AI