成交(房地产)
分割
图像分割
医学影像学
拓扑(电路)
计算机科学
人工智能
计算机视觉
模式识别(心理学)
数学
组合数学
业务
财务
作者
Qian Wu,Yufei Chen,Wei Liu,Xiaodong Yue,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3405982
摘要
Accurately segmenting tubular structures, such as blood vessels or nerves, holds significant clinical implications across various medical applications. However, existing methods often exhibit limitations in achieving satisfactory topological performance, particularly in terms of preserving connectivity. To address this challenge, we propose a novel deep-learning approach, termed Deep Closing, inspired by the well-established classic closing operation. Deep Closing first leverages an AutoEncoder trained in the Masked Image Modeling (MIM) paradigm, enhanced with digital topology knowledge, to effectively learn the inherent shape prior of tubular structures and indicate potential disconnected regions. Subsequently, a Simple Components Erosion module is employed to generate topology-focused outcomes, which refines the preceding segmentation results, ensuring all the generated regions are topologically significant. To evaluate the efficacy of Deep Closing, we conduct comprehensive experiments on 4 datasets: DRIVE, CHASE DB1, DCA1, and CREMI. The results demonstrate that our approach yields considerable improvements in topological performance compared with existing methods. Furthermore, Deep Closing exhibits the ability to generalize and transfer knowledge from external datasets, showcasing its robustness and adaptability. The code for this paper has been available at: https://github.com/5k5000/DeepClosing.
科研通智能强力驱动
Strongly Powered by AbleSci AI