Deep Closing: Enhancing Topological Connectivity in Medical Tubular Segmentation

成交(房地产) 分割 图像分割 医学影像学 拓扑(电路) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数学 组合数学 业务 财务
作者
Qian Wu,Yufei Chen,Wei Liu,Xiaodong Yue,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3990-4003 被引量:3
标识
DOI:10.1109/tmi.2024.3405982
摘要

Accurately segmenting tubular structures, such as blood vessels or nerves, holds significant clinical implications across various medical applications. However, existing methods often exhibit limitations in achieving satisfactory topological performance, particularly in terms of preserving connectivity. To address this challenge, we propose a novel deep-learning approach, termed Deep Closing, inspired by the well-established classic closing operation. Deep Closing first leverages an AutoEncoder trained in the Masked Image Modeling (MIM) paradigm, enhanced with digital topology knowledge, to effectively learn the inherent shape prior of tubular structures and indicate potential disconnected regions. Subsequently, a Simple Components Erosion module is employed to generate topology-focused outcomes, which refines the preceding segmentation results, ensuring all the generated regions are topologically significant. To evaluate the efficacy of Deep Closing, we conduct comprehensive experiments on 4 datasets: DRIVE, CHASE DB1, DCA1, and CREMI. The results demonstrate that our approach yields considerable improvements in topological performance compared with existing methods. Furthermore, Deep Closing exhibits the ability to generalize and transfer knowledge from external datasets, showcasing its robustness and adaptability. The code for this paper has been available at: https://github.com/5k5000/DeepClosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bob完成签到,获得积分10
刚刚
番豆完成签到,获得积分10
刚刚
刚刚
wdl发布了新的文献求助10
刚刚
xs1235发布了新的文献求助10
刚刚
Q丶完成签到,获得积分10
刚刚
get完成签到,获得积分10
刚刚
小乖完成签到,获得积分10
1秒前
yyy完成签到,获得积分10
1秒前
1秒前
1秒前
Johnson完成签到 ,获得积分10
2秒前
酷波er应助指北针采纳,获得10
2秒前
阿咧哒发布了新的文献求助30
2秒前
2秒前
2秒前
王一鸣完成签到 ,获得积分10
3秒前
Manchester完成签到,获得积分10
3秒前
木头人完成签到,获得积分10
3秒前
Owen应助JMrider采纳,获得10
3秒前
义气的羽毛完成签到,获得积分10
3秒前
3秒前
dc123456发布了新的文献求助10
4秒前
永远55度发布了新的文献求助10
4秒前
嘻嘻哈哈应助非鱼鱼子采纳,获得10
4秒前
笑点低的紫完成签到,获得积分20
5秒前
5秒前
wanci应助自由的荷包蛋采纳,获得10
5秒前
64658应助莫愁采纳,获得10
6秒前
郑大钱发布了新的文献求助10
6秒前
zyw发布了新的文献求助10
6秒前
外向的如冰完成签到,获得积分10
6秒前
飘逸烤面包兢兢业业完成签到,获得积分10
7秒前
聪明梦松发布了新的文献求助10
7秒前
李思超完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824