Deep Closing: Enhancing Topological Connectivity in Medical Tubular Segmentation

成交(房地产) 分割 图像分割 医学影像学 拓扑(电路) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数学 组合数学 业务 财务
作者
Qian Wu,Yufei Chen,Wei Liu,Xiaodong Yue,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3990-4003
标识
DOI:10.1109/tmi.2024.3405982
摘要

Accurately segmenting tubular structures, such as blood vessels or nerves, holds significant clinical implications across various medical applications. However, existing methods often exhibit limitations in achieving satisfactory topological performance, particularly in terms of preserving connectivity. To address this challenge, we propose a novel deep-learning approach, termed Deep Closing, inspired by the well-established classic closing operation. Deep Closing first leverages an AutoEncoder trained in the Masked Image Modeling (MIM) paradigm, enhanced with digital topology knowledge, to effectively learn the inherent shape prior of tubular structures and indicate potential disconnected regions. Subsequently, a Simple Components Erosion module is employed to generate topology-focused outcomes, which refines the preceding segmentation results, ensuring all the generated regions are topologically significant. To evaluate the efficacy of Deep Closing, we conduct comprehensive experiments on 4 datasets: DRIVE, CHASE DB1, DCA1, and CREMI. The results demonstrate that our approach yields considerable improvements in topological performance compared with existing methods. Furthermore, Deep Closing exhibits the ability to generalize and transfer knowledge from external datasets, showcasing its robustness and adaptability. The code for this paper has been available at: https://github.com/5k5000/DeepClosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sylnd126发布了新的文献求助10
刚刚
Owen应助Hexagram采纳,获得10
1秒前
肥肥发布了新的文献求助20
1秒前
小T完成签到 ,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
wulin应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
wulin应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得20
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
zho应助科研通管家采纳,获得10
3秒前
3秒前
会发光的星星完成签到,获得积分10
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
YIX完成签到,获得积分10
3秒前
Cu完成签到 ,获得积分10
5秒前
5秒前
柯一一应助gilderf采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
赵赵发布了新的文献求助10
9秒前
9秒前
焦立超发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232