Deep Closing: Enhancing Topological Connectivity in Medical Tubular Segmentation

成交(房地产) 分割 图像分割 医学影像学 拓扑(电路) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数学 组合数学 业务 财务
作者
Qian Wu,Yufei Chen,Wei Liu,Xiaodong Yue,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3990-4003 被引量:3
标识
DOI:10.1109/tmi.2024.3405982
摘要

Accurately segmenting tubular structures, such as blood vessels or nerves, holds significant clinical implications across various medical applications. However, existing methods often exhibit limitations in achieving satisfactory topological performance, particularly in terms of preserving connectivity. To address this challenge, we propose a novel deep-learning approach, termed Deep Closing, inspired by the well-established classic closing operation. Deep Closing first leverages an AutoEncoder trained in the Masked Image Modeling (MIM) paradigm, enhanced with digital topology knowledge, to effectively learn the inherent shape prior of tubular structures and indicate potential disconnected regions. Subsequently, a Simple Components Erosion module is employed to generate topology-focused outcomes, which refines the preceding segmentation results, ensuring all the generated regions are topologically significant. To evaluate the efficacy of Deep Closing, we conduct comprehensive experiments on 4 datasets: DRIVE, CHASE DB1, DCA1, and CREMI. The results demonstrate that our approach yields considerable improvements in topological performance compared with existing methods. Furthermore, Deep Closing exhibits the ability to generalize and transfer knowledge from external datasets, showcasing its robustness and adaptability. The code for this paper has been available at: https://github.com/5k5000/DeepClosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助yannnis采纳,获得10
刚刚
Lioxy完成签到 ,获得积分20
刚刚
Hello应助细腻冥王星采纳,获得10
刚刚
刚刚
刚刚
zz发布了新的文献求助10
刚刚
科研通AI6应助崔尔蓉采纳,获得10
1秒前
小林完成签到,获得积分10
1秒前
1秒前
小二郎应助ly采纳,获得10
2秒前
夏老师发布了新的文献求助10
2秒前
科研通AI6应助张mingyu123采纳,获得10
2秒前
2秒前
英俊的铭应助能干的邹采纳,获得10
2秒前
2秒前
爱吃芝士完成签到,获得积分10
3秒前
thth驳回了谷雨应助
3秒前
我是老大应助悬铃木采纳,获得10
3秒前
科研通AI6应助dghcmh采纳,获得10
3秒前
冯家源发布了新的文献求助10
5秒前
hui完成签到,获得积分10
5秒前
5秒前
Haoziyu完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
冯露瑶发布了新的文献求助10
6秒前
6秒前
拼搏的二哈完成签到,获得积分10
7秒前
小二郎应助HDY采纳,获得10
7秒前
7秒前
7秒前
小马甲应助快乐小男生采纳,获得10
8秒前
8秒前
8秒前
早日毕业发布了新的文献求助10
9秒前
9秒前
大反应釜发布了新的文献求助10
10秒前
李子发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589038
求助须知:如何正确求助?哪些是违规求助? 4671863
关于积分的说明 14789964
捐赠科研通 4627369
什么是DOI,文献DOI怎么找? 2532053
邀请新用户注册赠送积分活动 1500695
关于科研通互助平台的介绍 1468382