Image driven deep learning method with FFT solver for predicting the microscale full field stress of stochastic boundary composites

微尺度化学 材料科学 解算器 复合材料 快速傅里叶变换 领域(数学) 边界(拓扑) 压力(语言学) 边值问题 应力场 结构工程 计算机科学 数学 数学优化 算法 数学分析 有限元法 工程类 数学教育 哲学 纯数学 语言学
作者
Yong Liao,Bing Wang,Hongyue Wang,Songhe Meng,Guodong Fang
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.28614
摘要

Abstract A novel image‐driven deep learning approach embedded with model‐data‐knowledge information can directly predict the full field stress distribution and mechanical properties of composites solely based on initial scanning geometry images. The fiber spatial distribution and morphological features are identified by Scanning Electron Microscopy (SEM) initially. An effective random fiber generation algorithm is further utilized to generate images database comprising equivalent geometric models of various microstructures. Subsequently, the geometry model images database is analyzed by fast Fourier transform (FFT) to produce the database including the elastic modulus parameters and full field stress distributions of composites with distinct microstructures. Finally, an innovative image‐learning comprehensive paradigm uniting convolutional neural networks and convolutional autoencoders is elaborated systematically to learn the inherent laws of geometry images and field images. The results show that the proposed method have capacity to effectively and accurately predict the elastic modulus and full field stress distributions combined with error analysis even for stochastic boundary composites. The proposed methodology is a symbiosis of cutting‐edge image learning and non‐destructive testing techniques for composites, which can directly use the local non‐destructive or scanning images of composite structural components to quickly obtain field information and further predict damage evolution online. Highlights Proposing a novel deep learning approach combined with FFT directly to predict stress distribution of stochastic boundary composites solely based on micro‐images. Adopting equivalent geometric models dispersed by higher pixels mesh density considering extreme thin interface. Incorporate adaptive algorithms for streamlined training optimization. An innovative integration of deep learning and non‐destructive testing technology for the stress distribution and properties prediction online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙耶酱完成签到,获得积分10
刚刚
刚刚
许多年以后完成签到,获得积分10
刚刚
木子完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
z2发布了新的文献求助10
2秒前
3秒前
包包完成签到 ,获得积分10
3秒前
lizh187发布了新的文献求助10
3秒前
3秒前
Agoni完成签到,获得积分10
3秒前
木子发布了新的文献求助10
4秒前
hzl完成签到,获得积分10
4秒前
秋秋完成签到,获得积分10
4秒前
4秒前
lala发布了新的文献求助10
4秒前
美丽的飞飞完成签到,获得积分20
4秒前
蒋时晏完成签到 ,获得积分0
5秒前
orixero应助憧憬采纳,获得10
5秒前
6秒前
6秒前
冰勾板勾完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
玉衡完成签到,获得积分10
7秒前
等等NANO完成签到,获得积分10
7秒前
自由的凛发布了新的文献求助10
7秒前
8秒前
8秒前
ljw发布了新的文献求助10
8秒前
opticsLM完成签到,获得积分10
8秒前
Pyc完成签到,获得积分10
9秒前
9秒前
9秒前
dicy1232003完成签到,获得积分10
10秒前
Jtiger完成签到,获得积分20
11秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081823
求助须知:如何正确求助?哪些是违规求助? 2734862
关于积分的说明 7534680
捐赠科研通 2384387
什么是DOI,文献DOI怎么找? 1264312
科研通“疑难数据库(出版商)”最低求助积分说明 612614
版权声明 597600