Image driven deep learning method with FFT solver for predicting the microscale full field stress of stochastic boundary composites

微尺度化学 材料科学 解算器 复合材料 快速傅里叶变换 领域(数学) 边界(拓扑) 压力(语言学) 边值问题 应力场 结构工程 计算机科学 数学 数学优化 算法 数学分析 有限元法 工程类 数学教育 哲学 纯数学 语言学
作者
Yong Liao,Bing Wang,Hongyue Wang,Songhe Meng,Guodong Fang
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.28614
摘要

Abstract A novel image‐driven deep learning approach embedded with model‐data‐knowledge information can directly predict the full field stress distribution and mechanical properties of composites solely based on initial scanning geometry images. The fiber spatial distribution and morphological features are identified by Scanning Electron Microscopy (SEM) initially. An effective random fiber generation algorithm is further utilized to generate images database comprising equivalent geometric models of various microstructures. Subsequently, the geometry model images database is analyzed by fast Fourier transform (FFT) to produce the database including the elastic modulus parameters and full field stress distributions of composites with distinct microstructures. Finally, an innovative image‐learning comprehensive paradigm uniting convolutional neural networks and convolutional autoencoders is elaborated systematically to learn the inherent laws of geometry images and field images. The results show that the proposed method have capacity to effectively and accurately predict the elastic modulus and full field stress distributions combined with error analysis even for stochastic boundary composites. The proposed methodology is a symbiosis of cutting‐edge image learning and non‐destructive testing techniques for composites, which can directly use the local non‐destructive or scanning images of composite structural components to quickly obtain field information and further predict damage evolution online. Highlights Proposing a novel deep learning approach combined with FFT directly to predict stress distribution of stochastic boundary composites solely based on micro‐images. Adopting equivalent geometric models dispersed by higher pixels mesh density considering extreme thin interface. Incorporate adaptive algorithms for streamlined training optimization. An innovative integration of deep learning and non‐destructive testing technology for the stress distribution and properties prediction online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助小新采纳,获得10
1秒前
不系舟发布了新的文献求助10
1秒前
Wen完成签到,获得积分10
1秒前
海岸线完成签到,获得积分10
1秒前
猜不猜不发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
传奇3应助酷酷小天鹅采纳,获得10
3秒前
cf2v发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
伶俐草丛完成签到,获得积分10
4秒前
骆欣怡完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
ding应助小全采纳,获得10
5秒前
yuan完成签到,获得积分10
5秒前
Lam完成签到,获得积分20
5秒前
SQ完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
Chow发布了新的文献求助10
7秒前
Candy2024发布了新的文献求助10
8秒前
唯有言若完成签到 ,获得积分10
8秒前
9秒前
科研靓仔发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
酷酷小天鹅完成签到,获得积分10
11秒前
超爱茉莉茶完成签到,获得积分10
12秒前
1111发布了新的文献求助50
12秒前
Kirito应助顺利的琳采纳,获得50
12秒前
英吉利25发布了新的文献求助10
12秒前
科研通AI5应助苦力牛采纳,获得10
12秒前
13秒前
小蘑菇应助momoxx采纳,获得10
13秒前
研友_VZG7GZ应助Hann采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603191
求助须知:如何正确求助?哪些是违规求助? 4012087
关于积分的说明 12421692
捐赠科研通 3692454
什么是DOI,文献DOI怎么找? 2035657
邀请新用户注册赠送积分活动 1068823
科研通“疑难数据库(出版商)”最低求助积分说明 953316