材料科学
钢筋
剪切(地质)
复合材料
抗剪强度(土壤)
结构工程
工程类
地质学
土壤科学
土壤水分
作者
Doo‐Yeol Yoo,Salman Soleimani-Dashtaki,Taekgeun Oh,Booki Chun,Jinseok Choi,Nemkumar Banthia,Young-Soo Yoon
标识
DOI:10.1016/j.cemconcomp.2024.105606
摘要
This study aims to investigate the effects of the geometrical properties and volume content of steel fibers on the shear resistance of reinforced high-strength concrete (HSC) beams without stirrups. Hooked-end and twisted steel fibers with different aspect ratios ranging from 60 to 100 were used at volume fractions of 0.5%–1.0%. The shear strength of HSC beams without stirrups significantly increased due to the addition of steel fibers and by increasing their volume fraction by up to 1.0%, resulting in approximately 1.7 times higher shear resistance. A higher fiber aspect ratio was effective in improving the resistance to shear failure of HSC beams without stirrups and in enhancing beam deformability relative to the increase in shear strength. Using twisted steel fibers led to better shear resistance than hooked-end steel fibers, resulting in 1.11- and 3.34-times higher shear strength and ductility at the same fiber volume fraction on average. The shear strength of steel fiber-reinforced concrete (SFRC) beams was also predicted using eight different models. Narayanan's model most precisely predicted the shear strengths of reinforced SFRC beams without shear reinforcement, with an average vu,exp/vu,pred ratio of 1.16. The shear strength increased with the decrease in shear span-to-depth (a/d) ratio and the increase in the fiber factor. The contribution of steel fibers to shear strength was greater for deep beams than slender beams. The predicted shear strengths of deep beams and high-strength SFRC showed a significant deviation from the actual value and required careful consideration.
科研通智能强力驱动
Strongly Powered by AbleSci AI