Identification of Pests and Diseases in Greenhouse Rice Based on ConvNeXt-T Neural Network

计算机科学 温室 人工智能 人工神经网络 鉴定(生物学) 深度学习 预处理器 农业工程 农学 生物 生态学 工程类
作者
Dan Li,Chao Zhang
标识
DOI:10.1109/icdcot61034.2024.10515357
摘要

Rice cultivation in greenhouses is a key agricultural form in our agricultural development. Timely detection and prevention of pests and diseases in rice in greenhouses has a significant impact on improving rice yield. Deep learning models excel in image recognition and can be used to monitor rice-induced growth conditions in rice in greenhouses and quickly identify diseases and pests. Image data analysis enables farmers to take timely measures to prevent the spread of pests and diseases. Various environmental factors affect the collected dataset, resulting in an insufficient number of available images, and the training process can easily fail to extract effective features. Addressing these problems, this paper proposes a rice pest and disease recognition model based on the ConvNeXt-T neural network. Data enhancement techniques, such as mirroring and cropping, and data preprocessing steps, including the addition of Gaussian noise, random brightness, and random masking, were applied to the dataset. The initially acquired 5,932 rice pest images were expanded to 21,340 images. These augmented images were then used to train a ConvNeXt-T neural network model for recognizing four of the most common diseases of rice: leaf blight, rice bacterial streak, brown mottle, and rice dong quai virus disease. The experimental results demonstrate that the ConvNeXt-T neural network performs optimally, achieving the highest level of disease recognition accuracy (99.86%) compared to the classical AlexNet, GoogLeNet, ResNet34, and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse riceacterial streak, brown mottle, and rice dong quai virus disease). The experimental results show that the ConvNeXt-T neural network performs optimally and achieves the highest level of disease recognition accuracy (99.86%) compared with the classical AlexNet, GoogLeNet, ResNet34 and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse rice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助霸气小土豆采纳,获得10
刚刚
2秒前
lyh完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
LuoYixiang完成签到,获得积分10
4秒前
可可可可汁完成签到 ,获得积分10
4秒前
粥里完成签到,获得积分10
5秒前
lyh发布了新的文献求助10
6秒前
6秒前
ZZZ发布了新的文献求助10
8秒前
傲娇凉面发布了新的文献求助10
9秒前
郑琳琳发布了新的文献求助10
9秒前
科研通AI5应助大力世界采纳,获得10
9秒前
wodeqiche2007发布了新的文献求助30
10秒前
科研通AI5应助httpyg采纳,获得10
10秒前
zjkzh发布了新的文献求助10
11秒前
12秒前
爆米花应助张张张张张采纳,获得10
12秒前
13秒前
camaelxin完成签到,获得积分10
13秒前
14秒前
烟花应助qimiao采纳,获得10
15秒前
一一应助eeeee采纳,获得10
16秒前
顺利秋灵发布了新的文献求助10
18秒前
18秒前
彭于晏应助ZZZ采纳,获得10
19秒前
19秒前
19秒前
科研通AI5应助独行侠采纳,获得10
19秒前
20秒前
22秒前
情怀应助泽成采纳,获得10
23秒前
77完成签到 ,获得积分10
23秒前
激情的怀薇完成签到,获得积分10
23秒前
星辰大海应助发嗲的绿柏采纳,获得20
25秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098285
关于积分的说明 9238941
捐赠科研通 2793282
什么是DOI,文献DOI怎么找? 1532950
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707302