Identification of Pests and Diseases in Greenhouse Rice Based on ConvNeXt-T Neural Network

计算机科学 温室 人工智能 人工神经网络 鉴定(生物学) 深度学习 预处理器 农业工程 农学 生物 生态学 工程类
作者
Dan Li,Chao Zhang
标识
DOI:10.1109/icdcot61034.2024.10515357
摘要

Rice cultivation in greenhouses is a key agricultural form in our agricultural development. Timely detection and prevention of pests and diseases in rice in greenhouses has a significant impact on improving rice yield. Deep learning models excel in image recognition and can be used to monitor rice-induced growth conditions in rice in greenhouses and quickly identify diseases and pests. Image data analysis enables farmers to take timely measures to prevent the spread of pests and diseases. Various environmental factors affect the collected dataset, resulting in an insufficient number of available images, and the training process can easily fail to extract effective features. Addressing these problems, this paper proposes a rice pest and disease recognition model based on the ConvNeXt-T neural network. Data enhancement techniques, such as mirroring and cropping, and data preprocessing steps, including the addition of Gaussian noise, random brightness, and random masking, were applied to the dataset. The initially acquired 5,932 rice pest images were expanded to 21,340 images. These augmented images were then used to train a ConvNeXt-T neural network model for recognizing four of the most common diseases of rice: leaf blight, rice bacterial streak, brown mottle, and rice dong quai virus disease. The experimental results demonstrate that the ConvNeXt-T neural network performs optimally, achieving the highest level of disease recognition accuracy (99.86%) compared to the classical AlexNet, GoogLeNet, ResNet34, and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse riceacterial streak, brown mottle, and rice dong quai virus disease). The experimental results show that the ConvNeXt-T neural network performs optimally and achieves the highest level of disease recognition accuracy (99.86%) compared with the classical AlexNet, GoogLeNet, ResNet34 and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse rice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
市区凤姐完成签到,获得积分10
刚刚
eric888应助开心市民采纳,获得30
1秒前
失眠的契完成签到,获得积分10
1秒前
欧耶欧椰完成签到 ,获得积分10
2秒前
shaofeng完成签到,获得积分10
2秒前
hamliton完成签到 ,获得积分20
2秒前
完美世界应助jianrobsim采纳,获得10
3秒前
传奇3应助欢呼的听南采纳,获得10
3秒前
汉堡包应助幸福无声采纳,获得10
3秒前
3秒前
Andy完成签到 ,获得积分10
3秒前
mxt完成签到,获得积分10
3秒前
4秒前
4秒前
hyacinth完成签到,获得积分10
4秒前
5秒前
zzz完成签到,获得积分10
5秒前
koreyoshi发布了新的文献求助10
5秒前
up完成签到,获得积分10
6秒前
淡淡的酸奶完成签到,获得积分10
6秒前
wanci应助yunsww采纳,获得10
6秒前
6秒前
执着的风华完成签到,获得积分10
6秒前
光之晨曦完成签到,获得积分10
7秒前
7秒前
7秒前
隐形曼青应助Chris采纳,获得100
7秒前
远扬关注了科研通微信公众号
7秒前
程文轩发布了新的文献求助10
7秒前
啦啦啦关注了科研通微信公众号
7秒前
wx2360ouc完成签到 ,获得积分10
8秒前
NIUBEN完成签到,获得积分10
8秒前
8秒前
Lynn完成签到,获得积分10
8秒前
乔钰涵发布了新的文献求助10
9秒前
伶俐骁发布了新的文献求助10
9秒前
9秒前
思辰。完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207