亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Pests and Diseases in Greenhouse Rice Based on ConvNeXt-T Neural Network

计算机科学 温室 人工智能 人工神经网络 鉴定(生物学) 深度学习 预处理器 农业工程 农学 生物 生态学 工程类
作者
Dan Li,Chao Zhang
标识
DOI:10.1109/icdcot61034.2024.10515357
摘要

Rice cultivation in greenhouses is a key agricultural form in our agricultural development. Timely detection and prevention of pests and diseases in rice in greenhouses has a significant impact on improving rice yield. Deep learning models excel in image recognition and can be used to monitor rice-induced growth conditions in rice in greenhouses and quickly identify diseases and pests. Image data analysis enables farmers to take timely measures to prevent the spread of pests and diseases. Various environmental factors affect the collected dataset, resulting in an insufficient number of available images, and the training process can easily fail to extract effective features. Addressing these problems, this paper proposes a rice pest and disease recognition model based on the ConvNeXt-T neural network. Data enhancement techniques, such as mirroring and cropping, and data preprocessing steps, including the addition of Gaussian noise, random brightness, and random masking, were applied to the dataset. The initially acquired 5,932 rice pest images were expanded to 21,340 images. These augmented images were then used to train a ConvNeXt-T neural network model for recognizing four of the most common diseases of rice: leaf blight, rice bacterial streak, brown mottle, and rice dong quai virus disease. The experimental results demonstrate that the ConvNeXt-T neural network performs optimally, achieving the highest level of disease recognition accuracy (99.86%) compared to the classical AlexNet, GoogLeNet, ResNet34, and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse riceacterial streak, brown mottle, and rice dong quai virus disease). The experimental results show that the ConvNeXt-T neural network performs optimally and achieves the highest level of disease recognition accuracy (99.86%) compared with the classical AlexNet, GoogLeNet, ResNet34 and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse rice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
小潘完成签到 ,获得积分10
10秒前
14秒前
110o发布了新的文献求助10
19秒前
十一苗完成签到 ,获得积分10
24秒前
31秒前
51秒前
1分钟前
Tashanzhishi完成签到,获得积分10
1分钟前
kuoping完成签到,获得积分0
1分钟前
1分钟前
2分钟前
2分钟前
温馨家园完成签到 ,获得积分10
2分钟前
2分钟前
GIA完成签到,获得积分10
2分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
快乐飞丹发布了新的文献求助10
3分钟前
3分钟前
快乐飞丹完成签到,获得积分20
4分钟前
9527应助Wei采纳,获得10
4分钟前
大模型应助千堆雪claris采纳,获得10
4分钟前
充电宝应助平安喜乐采纳,获得10
4分钟前
4分钟前
4分钟前
研友_nEWRJ8完成签到,获得积分10
4分钟前
4分钟前
平安喜乐发布了新的文献求助10
5分钟前
天天快乐应助西西娃儿采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
深情安青应助平安喜乐采纳,获得10
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
平安喜乐发布了新的文献求助10
5分钟前
6分钟前
西西娃儿发布了新的文献求助10
6分钟前
Jie关闭了Jie文献求助
6分钟前
李健应助平安喜乐采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824