Identification of Pests and Diseases in Greenhouse Rice Based on ConvNeXt-T Neural Network

计算机科学 温室 人工智能 人工神经网络 鉴定(生物学) 深度学习 预处理器 农业工程 农学 生物 生态学 工程类
作者
Dan Li,Chao Zhang
标识
DOI:10.1109/icdcot61034.2024.10515357
摘要

Rice cultivation in greenhouses is a key agricultural form in our agricultural development. Timely detection and prevention of pests and diseases in rice in greenhouses has a significant impact on improving rice yield. Deep learning models excel in image recognition and can be used to monitor rice-induced growth conditions in rice in greenhouses and quickly identify diseases and pests. Image data analysis enables farmers to take timely measures to prevent the spread of pests and diseases. Various environmental factors affect the collected dataset, resulting in an insufficient number of available images, and the training process can easily fail to extract effective features. Addressing these problems, this paper proposes a rice pest and disease recognition model based on the ConvNeXt-T neural network. Data enhancement techniques, such as mirroring and cropping, and data preprocessing steps, including the addition of Gaussian noise, random brightness, and random masking, were applied to the dataset. The initially acquired 5,932 rice pest images were expanded to 21,340 images. These augmented images were then used to train a ConvNeXt-T neural network model for recognizing four of the most common diseases of rice: leaf blight, rice bacterial streak, brown mottle, and rice dong quai virus disease. The experimental results demonstrate that the ConvNeXt-T neural network performs optimally, achieving the highest level of disease recognition accuracy (99.86%) compared to the classical AlexNet, GoogLeNet, ResNet34, and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse riceacterial streak, brown mottle, and rice dong quai virus disease). The experimental results show that the ConvNeXt-T neural network performs optimally and achieves the highest level of disease recognition accuracy (99.86%) compared with the classical AlexNet, GoogLeNet, ResNet34 and VGG16 networks in the same experimental environment. Its excellent recognition accuracy provides strong support for the prevention of pests and diseases in greenhouse rice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的微笑完成签到 ,获得积分10
刚刚
刚刚
wuqs发布了新的文献求助10
1秒前
花灯王子完成签到,获得积分10
1秒前
充电宝应助Felixsun采纳,获得10
1秒前
1秒前
qiuli发布了新的文献求助10
1秒前
2秒前
香香完成签到 ,获得积分20
2秒前
李晓彤发布了新的文献求助10
2秒前
烂漫的书蕾完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
wuran发布了新的文献求助10
4秒前
花灯王子发布了新的文献求助30
4秒前
思源应助千里采纳,获得10
4秒前
4秒前
伽娜发布了新的文献求助10
5秒前
5秒前
So完成签到,获得积分10
5秒前
叶女士完成签到,获得积分10
5秒前
ziyue发布了新的文献求助30
5秒前
观察者完成签到,获得积分10
6秒前
CasterL完成签到,获得积分10
6秒前
阔达忆秋完成签到 ,获得积分10
6秒前
一平发布了新的文献求助10
6秒前
wuqs完成签到,获得积分10
6秒前
顾瑶发布了新的文献求助10
6秒前
麒ww完成签到 ,获得积分10
6秒前
nayuta发布了新的文献求助20
6秒前
6秒前
晨曦刘发布了新的文献求助10
7秒前
Owen应助薯片采纳,获得10
7秒前
7秒前
可乐加冰完成签到 ,获得积分10
7秒前
852应助弥弥采纳,获得10
7秒前
Jiaqing完成签到 ,获得积分10
7秒前
康康完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285