Effect of Subtle Changes in Ni2+/Ni3+ and Particle Surface Area in LiNi0.5Mn0.5-xCoxO2 (x = 0.1 - 0.3) Cathode Materials for Lithium-Ion Batteries
锂(药物)
材料科学
阴极
离子
粒子(生态学)
化学
物理化学
生物
内分泌学
生态学
有机化学
作者
Rajalakshmi Senthil Arumugam,Ramesh Shunmugasundaram,Оlga V. Safonova,Vanessa Wood
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society] 日期:2024-05-01卷期号:171 (5): 050522-050522被引量:1
标识
DOI:10.1149/1945-7111/ad4820
摘要
In Li[Ni,Mn,Co]O 2 (NMC) cathode materials, small changes in transition metal ratio and particle surface area can significantly impact capacity retention. To understand the combined effect of transition metal ratio and the particle surface area, we studied LiNi 0.5 Mn 0.5−x Co x O 2 (x = 0.1–0.3) particles with two different morphologies: dense, spherical particles and high-surface area aggregates. All compositions in this series contain the same percentage of Ni but have differing amounts of Ni 2+ and Ni 3+ . While Ni 2+ tends to induce anti-site defects predominantly in the bulk, Ni 3+ promotes particle surface reconstruction, both of which negatively impact capacity retention. Upon cycling to 4.4 V for 100 cycles, we observe that particles of high surface area with high Ni 3+ concentration undergo the most severe capacity degradation. However, high surface area particles with high proportion of anti-site defects undergo sluggish capacity fade. Overall, with 60% of Ni 2+ and 40% of Ni 3+ , spherical NMC 532 particles endure the detrimental effects of anti-site defects and surface reconstruction, but neither too prominently and thus emerges as the best candidate among the studied samples. This study highlights the synergy between transition metal ratio and particle surface area and how it determines the properties of the NMC cathode materials.