催化作用
氧化钒
钒
插层(化学)
材料科学
原子单位
化学物理
氧化物
分子
密度泛函理论
金属
拉伤
应变工程
纳米技术
无机化学
化学
计算化学
光电子学
硅
有机化学
内科学
冶金
量子力学
生物化学
医学
物理
作者
Xinyuan Li,Zechao Zhuang,Jing Chai,Ruiwen Shao,Junhui Wang,Zhuoli Jiang,Shuwen Zhu,Hongfei Gu,Jian Zhang,Zhentao Ma,Peng Zhang,Wensheng Yan,Lirong Zheng,Kaifeng Wu,Xusheng Zheng,Liang Zhang,Jiatao Zhang,Dingsheng Wang,Wenxing Chen,Yadong Li
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-03-24
卷期号:23 (7): 2905-2914
被引量:35
标识
DOI:10.1021/acs.nanolett.3c00256
摘要
Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI