Z-scheme driven photocatalytic activity of CNTs-integrated Bi2S3/WO3 nanohybrid catalysts for highly efficient hydrogen evolution under solar light irradiation

光催化 材料科学 化学工程 催化作用 制氢 试剂 辐照 三元运算 纳米技术 异质结 载流子 化学 光电子学 有机化学 核物理学 工程类 计算机科学 程序设计语言 物理
作者
Bharagav Urupalli,N. Ramesh Reddy,Vempuluru Navakoteswara Rao,P. Ravi,M. Sathish,M.V. Shankar,Tejraj M. Aminabhavi,Kakarla Raghava Reddy,M. Mamatha Kumari
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142886-142886 被引量:51
标识
DOI:10.1016/j.cej.2023.142886
摘要

Harvesting solar energy for the production of molecular hydrogen through photocatalytic approach is a clean and sustainable pathway to deal with the energy crisis and pollution. In this connection, direct Z-scheme interfaced noble metal free CNTs integrated Bi2S3-WO3 ternary composite was designed and developed through simple hydrothermal and wet impregnation strategies. This combination was manifested for the first time to tackle the photo-corrosion of Bi2S3 through Z-scheme heterojunction formation, and its effective contribution in the mitigation of charge carrier recombination was investigated. 9 wt% WO3 loaded Bi2S3 (WB-9) delivered a notable H2 production rate of 4.85 mmol.h−1.g-1cat over 5 vol% glycerol as a sacrificial reagent under simulated solar light irradiation. This enhancement was six folds higher than the pristine Bi2S3 photocatalytic activity. To enhance the reduction half-reaction further, electron mobility was regulated with CNT integration, which not only triggers the successive transport of electrons through its tubular channel, but also facilitate an excellent reduction co-catalyst to support rapid reduction of protons to form H2 molecules. Upon optimization of CNTs loading, 1 wt% CNTs loaded WB-9 (CWB-4) produced two-folds higher H2 production rates than WB-9, which is about 9.91 mmol.h−1. g−1cat. The observed efficiency, stability, and recyclability of CWB-4 attributed to the effective utilization of generated charge carriers across the system and suppressed photo-corrosion of Bi2S3 through the Z-scheme interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lyg完成签到,获得积分10
刚刚
young发布了新的文献求助10
刚刚
pan20完成签到,获得积分10
1秒前
白日焰火发布了新的文献求助10
1秒前
lyf发布了新的文献求助30
1秒前
1秒前
janice发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
4秒前
叶财财发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
不呐呐发布了新的文献求助30
6秒前
ding应助enen采纳,获得10
7秒前
7秒前
陈晓旭发布了新的文献求助10
7秒前
东东发布了新的文献求助10
7秒前
SciGPT应助emilybei采纳,获得10
8秒前
刚国忠发布了新的文献求助10
8秒前
叶财财完成签到,获得积分10
9秒前
Xu发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
zyfzyf完成签到,获得积分10
9秒前
科研通AI6应助川川采纳,获得10
10秒前
10秒前
科研通AI6应助火火木采纳,获得30
11秒前
will完成签到,获得积分10
11秒前
Hello应助小田睡不醒采纳,获得10
11秒前
11秒前
香蕉觅云应助荒野风采纳,获得10
11秒前
12秒前
12秒前
阳光发布了新的文献求助10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781