光催化
材料科学
化学工程
催化作用
制氢
试剂
辐照
三元运算
纳米技术
异质结
载流子
化学
光电子学
有机化学
核物理学
工程类
计算机科学
程序设计语言
物理
作者
U. Bharagav,N. Ramesh Reddy,Vempuluru Navakoteswara Rao,P. Ravi,M. Sathish,M.V. Shankar,Tejraj M. Aminabhavi,Kakarla Raghava Reddy,M. Mamatha Kumari
标识
DOI:10.1016/j.cej.2023.142886
摘要
Harvesting solar energy for the production of molecular hydrogen through photocatalytic approach is a clean and sustainable pathway to deal with the energy crisis and pollution. In this connection, direct Z-scheme interfaced noble metal free CNTs integrated Bi2S3-WO3 ternary composite was designed and developed through simple hydrothermal and wet impregnation strategies. This combination was manifested for the first time to tackle the photo-corrosion of Bi2S3 through Z-scheme heterojunction formation, and its effective contribution in the mitigation of charge carrier recombination was investigated. 9 wt% WO3 loaded Bi2S3 (WB-9) delivered a notable H2 production rate of 4.85 mmol.h−1.g-1cat over 5 vol% glycerol as a sacrificial reagent under simulated solar light irradiation. This enhancement was six folds higher than the pristine Bi2S3 photocatalytic activity. To enhance the reduction half-reaction further, electron mobility was regulated with CNT integration, which not only triggers the successive transport of electrons through its tubular channel, but also facilitate an excellent reduction co-catalyst to support rapid reduction of protons to form H2 molecules. Upon optimization of CNTs loading, 1 wt% CNTs loaded WB-9 (CWB-4) produced two-folds higher H2 production rates than WB-9, which is about 9.91 mmol.h−1. g−1cat. The observed efficiency, stability, and recyclability of CWB-4 attributed to the effective utilization of generated charge carriers across the system and suppressed photo-corrosion of Bi2S3 through the Z-scheme interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI