已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting floating litter in freshwater bodies with semi-supervised deep learning

垃圾箱 环境科学 深水 人工智能 水文学(农业) 地质学 海洋学 计算机科学 生态学 生物 岩土工程
作者
Tianlong Jia,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Riccardo Taormina
出处
期刊:Water Research [Elsevier BV]
卷期号:266: 122405-122405
标识
DOI:10.1016/j.watres.2024.122405
摘要

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
然来溪完成签到 ,获得积分10
1秒前
2秒前
2秒前
sunny66cai完成签到,获得积分10
2秒前
隔壁巷子里的劉完成签到 ,获得积分10
5秒前
goodice完成签到,获得积分20
6秒前
机灵天亦完成签到,获得积分10
6秒前
6秒前
sunny66cai发布了新的文献求助10
7秒前
liwenchao完成签到,获得积分10
7秒前
土豪的摩托完成签到 ,获得积分10
7秒前
机灵天亦发布了新的文献求助10
9秒前
goodice发布了新的文献求助30
10秒前
科研通AI5应助liwenchao采纳,获得10
13秒前
张张完成签到,获得积分10
16秒前
mr完成签到 ,获得积分10
16秒前
魔幻安南完成签到 ,获得积分10
19秒前
粗心的沉鱼完成签到,获得积分10
21秒前
Aliya完成签到 ,获得积分10
21秒前
晚意完成签到 ,获得积分10
26秒前
明理的亦寒完成签到 ,获得积分10
26秒前
28秒前
周什么园完成签到,获得积分10
29秒前
Jian完成签到,获得积分10
31秒前
31秒前
穷鬼爬行完成签到,获得积分10
33秒前
YLK123发布了新的文献求助10
34秒前
36秒前
车鹭洋给车鹭洋的求助进行了留言
37秒前
健壮的花瓣完成签到 ,获得积分10
38秒前
39秒前
陶醉的烤鸡完成签到 ,获得积分10
42秒前
TheGala发布了新的文献求助10
42秒前
NiNi完成签到 ,获得积分10
44秒前
陌路完成签到 ,获得积分10
45秒前
Ling完成签到,获得积分20
45秒前
47秒前
代柔发布了新的文献求助20
48秒前
火星上念梦完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614