亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting floating litter in freshwater bodies with semi-supervised deep learning

垃圾箱 环境科学 深水 人工智能 水文学(农业) 地质学 海洋学 计算机科学 生态学 生物 岩土工程
作者
Tianlong Jia,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Riccardo Taormina
出处
期刊:Water Research [Elsevier]
卷期号:266: 122405-122405
标识
DOI:10.1016/j.watres.2024.122405
摘要

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jay发布了新的文献求助30
4秒前
TYM发布了新的文献求助10
24秒前
Jay关闭了Jay文献求助
30秒前
星辰大海应助TYM采纳,获得10
33秒前
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
科研通AI6应助明芬采纳,获得10
1分钟前
星辰大海应助谭代涛采纳,获得10
1分钟前
1分钟前
洛莉塔发布了新的文献求助10
1分钟前
洛莉塔完成签到,获得积分10
2分钟前
ding应助明芬采纳,获得10
2分钟前
mathmotive完成签到,获得积分10
2分钟前
2分钟前
2分钟前
谭代涛发布了新的文献求助10
2分钟前
英勇明雪完成签到 ,获得积分10
2分钟前
3分钟前
TYM发布了新的文献求助10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
今后应助TYM采纳,获得10
3分钟前
silence完成签到 ,获得积分10
3分钟前
明芬发布了新的文献求助10
3分钟前
3分钟前
Puan发布了新的文献求助10
3分钟前
Puan完成签到,获得积分10
3分钟前
蚂蚁牙黑完成签到 ,获得积分10
4分钟前
Jay发布了新的文献求助10
4分钟前
连安阳发布了新的文献求助350
5分钟前
5分钟前
七叶花开完成签到 ,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
墨薄凉完成签到 ,获得积分10
6分钟前
连安阳完成签到,获得积分10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
阳光大山完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945