Detecting floating litter in freshwater bodies with semi-supervised deep learning

垃圾箱 环境科学 深水 人工智能 水文学(农业) 地质学 海洋学 计算机科学 生态学 生物 岩土工程
作者
Tianlong Jia,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Riccardo Taormina
出处
期刊:Water Research [Elsevier BV]
卷期号:266: 122405-122405
标识
DOI:10.1016/j.watres.2024.122405
摘要

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十曰完成签到,获得积分10
1秒前
jjjjchou完成签到,获得积分10
2秒前
虚心的不二完成签到 ,获得积分10
4秒前
xuzj应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
fang应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
shiizii应助科研通管家采纳,获得10
5秒前
7秒前
火星上的雨莲完成签到,获得积分10
11秒前
开朗的绮山发布了新的文献求助150
11秒前
平淡远山发布了新的文献求助10
12秒前
热心市民小红花应助Roman采纳,获得10
13秒前
艺术家完成签到 ,获得积分10
14秒前
研友_ngqjz8完成签到,获得积分10
15秒前
LT完成签到 ,获得积分0
16秒前
优秀的dd完成签到 ,获得积分10
17秒前
JamesPei应助八月宁静采纳,获得10
17秒前
www完成签到 ,获得积分10
19秒前
自由如天完成签到,获得积分10
19秒前
轻松白桃给轻松白桃的求助进行了留言
20秒前
热心市民小红花应助Roman采纳,获得10
21秒前
简单的元珊完成签到,获得积分10
22秒前
wanci应助饮汽水采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
成就映秋完成签到,获得积分10
23秒前
cherrychou完成签到,获得积分10
25秒前
不要引力完成签到,获得积分10
26秒前
27秒前
邵初蓝完成签到,获得积分10
27秒前
沙耶发布了新的文献求助200
28秒前
JOKER完成签到 ,获得积分10
30秒前
泥過完成签到 ,获得积分10
31秒前
张姣姣完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022