亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting floating litter in freshwater bodies with semi-supervised deep learning

垃圾箱 环境科学 深水 人工智能 水文学(农业) 地质学 海洋学 计算机科学 生态学 生物 岩土工程
作者
Tianlong Jia,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Riccardo Taormina
出处
期刊:Water Research [Elsevier BV]
卷期号:266: 122405-122405
标识
DOI:10.1016/j.watres.2024.122405
摘要

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
19秒前
1分钟前
1分钟前
1分钟前
小禾一定行完成签到 ,获得积分10
1分钟前
inkoin发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
inkoin完成签到,获得积分10
2分钟前
2分钟前
积极的台灯应助Akitten采纳,获得10
2分钟前
隐形曼青应助务实书包采纳,获得10
3分钟前
3分钟前
3分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
GingerF应助科研通管家采纳,获得50
4分钟前
GingerF应助科研通管家采纳,获得50
4分钟前
上官若男应助闫雪采纳,获得10
4分钟前
4分钟前
4分钟前
Akitten发布了新的文献求助10
4分钟前
5分钟前
大写的LV完成签到 ,获得积分10
5分钟前
ffff完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
Owen应助hongtao采纳,获得10
6分钟前
6分钟前
哈哈哈完成签到 ,获得积分10
6分钟前
7分钟前
liu完成签到 ,获得积分10
7分钟前
33发布了新的文献求助10
7分钟前
7分钟前
阿金啊发布了新的文献求助10
7分钟前
科研通AI2S应助Cong采纳,获得10
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
务实书包发布了新的文献求助10
8分钟前
8分钟前
8分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990219
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256472
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805190
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234