Detecting floating litter in freshwater bodies with semi-supervised deep learning

垃圾箱 环境科学 深水 人工智能 水文学(农业) 地质学 海洋学 计算机科学 生态学 生物 岩土工程
作者
Tianlong Jia,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Riccardo Taormina
出处
期刊:Water Research [Elsevier]
卷期号:266: 122405-122405
标识
DOI:10.1016/j.watres.2024.122405
摘要

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
march完成签到,获得积分20
3秒前
AYY完成签到,获得积分10
6秒前
刻苦小丸子完成签到,获得积分10
6秒前
7秒前
早早柚发布了新的文献求助10
8秒前
差生文具多完成签到 ,获得积分10
9秒前
落寞小懒猪完成签到 ,获得积分10
10秒前
天马行空发布了新的文献求助30
10秒前
day发布了新的文献求助10
10秒前
Smile完成签到 ,获得积分10
10秒前
Mint发布了新的文献求助10
11秒前
Oscar完成签到,获得积分10
12秒前
14秒前
huyulele完成签到,获得积分10
14秒前
15秒前
15秒前
英俊的铭应助恰恰采纳,获得10
16秒前
37发布了新的文献求助10
17秒前
WJ_Breakdown完成签到,获得积分10
17秒前
李爱国应助慈祥的曼香采纳,获得10
17秒前
丘比特应助DAKE采纳,获得30
18秒前
woo发布了新的文献求助10
18秒前
SCI完成签到,获得积分20
19秒前
cyxcr完成签到,获得积分20
20秒前
22秒前
robust66完成签到,获得积分10
23秒前
香蕉觅云应助陶一淘采纳,获得30
23秒前
顾家老攻完成签到,获得积分10
24秒前
24秒前
25秒前
你好世界完成签到,获得积分10
25秒前
山南水北发布了新的文献求助10
26秒前
恰恰完成签到,获得积分10
26秒前
阿斯顿发布了新的文献求助30
26秒前
LZH发布了新的文献求助10
26秒前
27秒前
xx完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194