Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 基因 生物化学
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dudu完成签到,获得积分10
1秒前
hdh发布了新的文献求助10
1秒前
replica完成签到,获得积分10
1秒前
火星上问夏完成签到 ,获得积分20
2秒前
晚霞不晚完成签到,获得积分10
2秒前
2秒前
林士发布了新的文献求助10
3秒前
HenryXiao完成签到,获得积分20
3秒前
4秒前
4秒前
可爱芷容发布了新的文献求助10
4秒前
lwl完成签到,获得积分10
5秒前
时闲应助哈哈哈哈哈哈采纳,获得10
5秒前
段仁杰完成签到,获得积分10
5秒前
slayers应助淡然绝山采纳,获得10
5秒前
cs发布了新的文献求助10
5秒前
老迟到的友容完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
ZHOUCHENG完成签到,获得积分0
6秒前
6秒前
汉堡包应助歡禧采纳,获得10
7秒前
JoshuaChen发布了新的文献求助10
7秒前
7秒前
7秒前
isaac完成签到,获得积分10
9秒前
清秀涵易发布了新的文献求助10
9秒前
10秒前
10秒前
luoluo完成签到 ,获得积分10
10秒前
灵巧代柔完成签到,获得积分10
10秒前
11秒前
呆萌鱼完成签到,获得积分10
11秒前
121234发布了新的文献求助10
11秒前
11秒前
CipherSage应助nzxnzx采纳,获得10
11秒前
炸虾仁完成签到 ,获得积分10
12秒前
越红完成签到,获得积分10
12秒前
杰杰发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650