Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 生物化学 基因
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyy完成签到 ,获得积分10
刚刚
LJ_2完成签到 ,获得积分10
8秒前
1255475177完成签到 ,获得积分10
11秒前
小石榴的爸爸完成签到 ,获得积分10
11秒前
重要的炳完成签到 ,获得积分10
12秒前
btcat完成签到,获得积分0
12秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
AiQi完成签到 ,获得积分10
19秒前
21秒前
鲸鱼打滚完成签到 ,获得积分10
23秒前
小张完成签到 ,获得积分10
23秒前
小石榴爸爸完成签到 ,获得积分10
24秒前
26秒前
阿莲娜完成签到 ,获得积分10
26秒前
30秒前
1234完成签到 ,获得积分10
30秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
Hayat应助科研通管家采纳,获得20
31秒前
abab小王发布了新的文献求助10
34秒前
荣浩宇完成签到 ,获得积分10
36秒前
YJ完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
魂梦与君同完成签到 ,获得积分10
40秒前
jinjing完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
hadfunsix完成签到 ,获得积分10
42秒前
合适的自行车完成签到 ,获得积分10
43秒前
蓝精灵完成签到 ,获得积分10
43秒前
左婷完成签到 ,获得积分10
45秒前
jiuzhege完成签到 ,获得积分10
51秒前
Caden完成签到 ,获得积分10
53秒前
无花果应助abab小王采纳,获得10
55秒前
zhangjianzeng完成签到 ,获得积分10
56秒前
非我完成签到 ,获得积分0
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671534
求助须知:如何正确求助?哪些是违规求助? 4919164
关于积分的说明 15134912
捐赠科研通 4830267
什么是DOI,文献DOI怎么找? 2587024
邀请新用户注册赠送积分活动 1540626
关于科研通互助平台的介绍 1498913