Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 基因 生物化学
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyuan发布了新的文献求助10
2秒前
苹果迎松完成签到 ,获得积分10
2秒前
hh关注了科研通微信公众号
2秒前
3秒前
3秒前
辛坦夫发布了新的文献求助10
4秒前
fei完成签到 ,获得积分10
4秒前
直率的冰海完成签到,获得积分10
4秒前
PPRer完成签到,获得积分10
5秒前
斯文败类应助时尚以亦采纳,获得10
5秒前
5秒前
6秒前
lulu完成签到,获得积分20
6秒前
21完成签到,获得积分10
7秒前
7秒前
8秒前
彭于晏应助甜甜十三采纳,获得10
8秒前
Severus完成签到 ,获得积分10
8秒前
1335804518完成签到 ,获得积分10
9秒前
leo完成签到,获得积分10
9秒前
董致宇发布了新的文献求助10
9秒前
9秒前
10秒前
Lj应助hhh采纳,获得10
10秒前
眯眯眼的乐曲完成签到,获得积分10
10秒前
Akim应助科研小越采纳,获得10
11秒前
左左曦完成签到,获得积分10
12秒前
msli发布了新的文献求助10
12秒前
球球球心发布了新的文献求助10
12秒前
晶格畸变完成签到,获得积分10
14秒前
xww完成签到,获得积分10
14秒前
思源应助不喜采纳,获得10
14秒前
Denvir完成签到 ,获得积分10
15秒前
15秒前
辛坦夫完成签到,获得积分10
15秒前
理工完成签到,获得积分20
16秒前
17秒前
小小科学家完成签到,获得积分10
17秒前
123完成签到,获得积分10
17秒前
独特安阳完成签到,获得积分10
17秒前
高分求助中
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
临床常见疾病:医学英语文献阅读(英文书籍,不要PDF版本,只要TXT、EPUB、DOC、DOCX版本) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3705665
求助须知:如何正确求助?哪些是违规求助? 3254781
关于积分的说明 9891524
捐赠科研通 2966822
什么是DOI,文献DOI怎么找? 1627150
邀请新用户注册赠送积分活动 771282
科研通“疑难数据库(出版商)”最低求助积分说明 743281