Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 生物化学 基因
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Einsamerxx采纳,获得10
刚刚
刚刚
mjh发布了新的文献求助10
刚刚
ll发布了新的文献求助10
刚刚
BBQ完成签到,获得积分10
刚刚
wxl19完成签到,获得积分20
1秒前
无辜的翠安完成签到,获得积分20
1秒前
奋斗映寒完成签到,获得积分10
1秒前
充电宝应助wang采纳,获得10
1秒前
1秒前
MechelleLu发布了新的文献求助50
1秒前
2秒前
苏星星发布了新的文献求助10
3秒前
莹野完成签到,获得积分10
4秒前
zhw发布了新的文献求助10
4秒前
wanci应助MSl采纳,获得10
4秒前
4秒前
fakte完成签到,获得积分10
5秒前
英俊的铭应助飞行中的鱼采纳,获得10
5秒前
free应助小宁同学采纳,获得10
6秒前
6秒前
文献搬运工完成签到,获得积分10
7秒前
达拉崩吧发布了新的文献求助20
7秒前
8秒前
zzzzf完成签到,获得积分10
8秒前
科研通AI6应助LULU采纳,获得10
9秒前
10秒前
10秒前
俏皮的安萱完成签到 ,获得积分10
10秒前
所所应助等待的忻采纳,获得10
10秒前
小马甲应助岄岒yq采纳,获得10
11秒前
11秒前
12秒前
可靠F发布了新的文献求助10
12秒前
12秒前
在水一方应助霸气鹏煊采纳,获得10
12秒前
西瓜发布了新的文献求助30
12秒前
小宁同学完成签到,获得积分10
12秒前
13秒前
意羡发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329313
求助须知:如何正确求助?哪些是违规求助? 4468897
关于积分的说明 13907268
捐赠科研通 4361932
什么是DOI,文献DOI怎么找? 2396101
邀请新用户注册赠送积分活动 1389467
关于科研通互助平台的介绍 1360296