Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 生物化学 基因
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzw完成签到 ,获得积分10
1秒前
wjx发布了新的文献求助10
1秒前
无花果应助小羊采纳,获得10
1秒前
2秒前
2秒前
共享精神应助霸气的半双采纳,获得10
2秒前
查重率咋一百完成签到,获得积分10
2秒前
乐乐宝完成签到,获得积分10
3秒前
淼淼发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分10
6秒前
王琼慧完成签到 ,获得积分10
7秒前
小畅完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Sigramm应助张钰婷啦啦啦采纳,获得10
8秒前
mo完成签到,获得积分10
8秒前
8秒前
8秒前
心灵美的红牛完成签到,获得积分10
9秒前
9秒前
李爱国应助zuhayr采纳,获得10
9秒前
路鹅应助咕噜咕噜采纳,获得10
10秒前
10秒前
英姑应助车访枫采纳,获得10
10秒前
打打应助鞭霆采纳,获得10
10秒前
11秒前
橙子完成签到,获得积分10
12秒前
愿好发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
lsl发布了新的文献求助10
13秒前
zfm完成签到,获得积分10
13秒前
tonyfountain发布了新的文献求助10
14秒前
15秒前
15秒前
vito发布了新的文献求助10
15秒前
兆兆完成签到 ,获得积分10
15秒前
彭珊发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208