Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 基因 生物化学
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Tang Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yang Hu,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比亚迪士尼在逃公主完成签到,获得积分10
刚刚
1秒前
詹密完成签到,获得积分10
2秒前
seven完成签到,获得积分10
2秒前
Hosea完成签到 ,获得积分10
3秒前
自然刺猬完成签到,获得积分10
4秒前
5秒前
无味完成签到,获得积分10
5秒前
论文多多完成签到,获得积分10
5秒前
6秒前
Shirley完成签到,获得积分10
6秒前
h3xxxmax完成签到,获得积分10
7秒前
落落大方完成签到,获得积分10
7秒前
7秒前
8秒前
螺旋起飞派大星完成签到,获得积分10
8秒前
panng完成签到,获得积分10
8秒前
酷小裤发布了新的文献求助10
8秒前
8秒前
今天很美味完成签到 ,获得积分10
9秒前
xiaoka完成签到,获得积分10
11秒前
panng发布了新的文献求助10
11秒前
好纠结完成签到,获得积分10
12秒前
搞点学术发布了新的文献求助10
12秒前
謓言发布了新的文献求助10
12秒前
桐桐应助酷小裤采纳,获得10
12秒前
roselin26完成签到,获得积分10
13秒前
高大绝义完成签到,获得积分10
14秒前
jason完成签到,获得积分10
14秒前
安全平静完成签到,获得积分10
15秒前
15秒前
冷酷思远完成签到 ,获得积分10
15秒前
18°N天水色完成签到,获得积分10
15秒前
郑毅完成签到,获得积分10
17秒前
牧紫菱完成签到,获得积分10
19秒前
謓言完成签到,获得积分10
19秒前
yys完成签到,获得积分10
20秒前
ZX完成签到,获得积分10
20秒前
123完成签到,获得积分10
20秒前
南方周末完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565