Temporal aware Mixed Attention-based Convolution and Transformer Network for cross-subject EEG emotion recognition

计算机科学 脑电图 语音识别 变压器 卷积(计算机科学) 模式识别(心理学) 人工智能 心理学 人工神经网络 电压 工程类 神经科学 电气工程
作者
Xiaopeng Si,Dong Huang,Zhen Liang,Yulin Sun,He Huang,Qile Liu,Zhuobin Yang,Dong Ming
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:181: 108973-108973 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108973
摘要

Emotion recognition is crucial for human-computer interaction, and electroencephalography (EEG) stands out as a valuable tool for capturing and reflecting human emotions. In this study, we propose a hierarchical hybrid model called Mixed Attention-based Convolution and Transformer Network (MACTN). This model is designed to collectively capture both local and global temporal information and is inspired by insights from neuroscientific research on the temporal dynamics of emotions. First, we introduce depth-wise temporal convolution and separable convolution to extract local temporal features. Then, a self-attention-based transformer is used to integrate the sparse global emotional features. Besides, channel attention mechanism is designed to identify the most task-relevant channels, facilitating the capture of relationships between different channels and emotional states. Extensive experiments are conducted on three public datasets under both offline and online evaluation modes. In the multi-class cross-subject online evaluation using the THU-EP dataset, MACTN demonstrates an approximate 8% enhancement in 9-class emotion recognition accuracy in comparison to state-of-the-art methods. In the multi-class cross-subject offline evaluation using the DEAP and SEED datasets, a comparable performance is achieved solely based on the raw EEG signals, without the need for prior knowledge or transfer learning during the feature extraction and learning process. Furthermore, ablation studies have shown that integrating self-attention and channel-attention mechanisms improves classification performance. This method won the Emotional BCI Competition's final championship in the World Robot Contest. The source code is available at https://github.com/ThreePoundUniverse/MACTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助junc采纳,获得20
1秒前
绿洲完成签到,获得积分10
2秒前
2秒前
yf_zhu发布了新的文献求助10
2秒前
正直亦旋发布了新的文献求助10
2秒前
3秒前
华仔应助招财不肥采纳,获得10
3秒前
健康的梦曼完成签到 ,获得积分10
3秒前
最最最发布了新的文献求助10
3秒前
科研是什么鬼完成签到,获得积分10
5秒前
5秒前
6秒前
欢喜素阴完成签到 ,获得积分10
7秒前
yirenli完成签到,获得积分10
7秒前
希望天下0贩的0应助DAYTOY采纳,获得10
7秒前
狮子座完成签到,获得积分10
7秒前
爆米花应助润润轩轩采纳,获得10
7秒前
9秒前
熊boy完成签到,获得积分10
9秒前
1233完成签到,获得积分10
9秒前
Chang发布了新的文献求助10
9秒前
111222发布了新的文献求助50
9秒前
wxd发布了新的文献求助10
10秒前
上官若男应助浅笑采纳,获得10
11秒前
英姑应助Lxxixixi采纳,获得10
11秒前
斯文败类应助lichaoyes采纳,获得10
11秒前
aaaaa完成签到,获得积分10
11秒前
唉呦嘿发布了新的文献求助10
12秒前
共享精神应助迅速宛筠采纳,获得10
12秒前
上上谦应助酷炫过客采纳,获得10
12秒前
脑洞疼应助酷炫过客采纳,获得10
13秒前
千幻发布了新的文献求助10
13秒前
13秒前
14秒前
英俊的铭应助俎树同采纳,获得10
15秒前
15秒前
liyiren完成签到,获得积分10
16秒前
16秒前
k7完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762