计算机科学
脑电图
语音识别
变压器
卷积(计算机科学)
模式识别(心理学)
人工智能
心理学
人工神经网络
电压
工程类
神经科学
电气工程
作者
Xiaopeng Si,Dong Huang,Zhen Liang,Yulin Sun,He Huang,Qile Liu,Zhuobin Yang,Dong Ming
标识
DOI:10.1016/j.compbiomed.2024.108973
摘要
Emotion recognition is crucial for human-computer interaction, and electroencephalography (EEG) stands out as a valuable tool for capturing and reflecting human emotions. In this study, we propose a hierarchical hybrid model called Mixed Attention-based Convolution and Transformer Network (MACTN). This model is designed to collectively capture both local and global temporal information and is inspired by insights from neuroscientific research on the temporal dynamics of emotions. First, we introduce depth-wise temporal convolution and separable convolution to extract local temporal features. Then, a self-attention-based transformer is used to integrate the sparse global emotional features. Besides, channel attention mechanism is designed to identify the most task-relevant channels, facilitating the capture of relationships between different channels and emotional states. Extensive experiments are conducted on three public datasets under both offline and online evaluation modes. In the multi-class cross-subject online evaluation using the THU-EP dataset, MACTN demonstrates an approximate 8% enhancement in 9-class emotion recognition accuracy in comparison to state-of-the-art methods. In the multi-class cross-subject offline evaluation using the DEAP and SEED datasets, a comparable performance is achieved solely based on the raw EEG signals, without the need for prior knowledge or transfer learning during the feature extraction and learning process. Furthermore, ablation studies have shown that integrating self-attention and channel-attention mechanisms improves classification performance. This method won the Emotional BCI Competition's final championship in the World Robot Contest. The source code is available at https://github.com/ThreePoundUniverse/MACTN.
科研通智能强力驱动
Strongly Powered by AbleSci AI