Temporal aware Mixed Attention-based Convolution and Transformer Network for cross-subject EEG emotion recognition

计算机科学 脑电图 语音识别 变压器 卷积(计算机科学) 模式识别(心理学) 人工智能 心理学 人工神经网络 电压 工程类 神经科学 电气工程
作者
Xiaopeng Si,Dong Huang,Zhen Liang,Yulin Sun,He Huang,Qile Liu,Zhuobin Yang,Dong Ming
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:181: 108973-108973 被引量:13
标识
DOI:10.1016/j.compbiomed.2024.108973
摘要

Emotion recognition is crucial for human-computer interaction, and electroencephalography (EEG) stands out as a valuable tool for capturing and reflecting human emotions. In this study, we propose a hierarchical hybrid model called Mixed Attention-based Convolution and Transformer Network (MACTN). This model is designed to collectively capture both local and global temporal information and is inspired by insights from neuroscientific research on the temporal dynamics of emotions. First, we introduce depth-wise temporal convolution and separable convolution to extract local temporal features. Then, a self-attention-based transformer is used to integrate the sparse global emotional features. Besides, channel attention mechanism is designed to identify the most task-relevant channels, facilitating the capture of relationships between different channels and emotional states. Extensive experiments are conducted on three public datasets under both offline and online evaluation modes. In the multi-class cross-subject online evaluation using the THU-EP dataset, MACTN demonstrates an approximate 8% enhancement in 9-class emotion recognition accuracy in comparison to state-of-the-art methods. In the multi-class cross-subject offline evaluation using the DEAP and SEED datasets, a comparable performance is achieved solely based on the raw EEG signals, without the need for prior knowledge or transfer learning during the feature extraction and learning process. Furthermore, ablation studies have shown that integrating self-attention and channel-attention mechanisms improves classification performance. This method won the Emotional BCI Competition's final championship in the World Robot Contest. The source code is available at https://github.com/ThreePoundUniverse/MACTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wt发布了新的文献求助10
1秒前
威猛先生完成签到 ,获得积分20
2秒前
Nodens完成签到,获得积分10
2秒前
白沙湾完成签到,获得积分10
3秒前
3秒前
棕色垂耳兔完成签到 ,获得积分10
3秒前
4秒前
不安秋荷发布了新的文献求助10
7秒前
领导范儿应助舒心寒梅采纳,获得10
7秒前
范恒发布了新的文献求助10
7秒前
勇敢的心发布了新的文献求助10
7秒前
蓝蜗牛完成签到,获得积分10
7秒前
8秒前
9秒前
自闭中完成签到 ,获得积分10
9秒前
lss完成签到,获得积分10
10秒前
10秒前
科研牛人完成签到,获得积分10
11秒前
12秒前
哈哈哈哈完成签到,获得积分10
12秒前
12秒前
xcz发布了新的文献求助10
13秒前
13秒前
14秒前
稳重曼柔发布了新的文献求助10
14秒前
坚强的夏云完成签到,获得积分20
14秒前
LIU完成签到,获得积分10
15秒前
xyy发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
18秒前
Mic应助科研通管家采纳,获得10
19秒前
treetree的应助科研通管家采纳,获得10
19秒前
sevenhill应助科研通管家采纳,获得10
19秒前
FashionBoy应助超人会飞233采纳,获得10
19秒前
Hilda007应助科研通管家采纳,获得10
19秒前
un发布了新的文献求助10
19秒前
treetree的应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465458
求助须知:如何正确求助?哪些是违规求助? 4569773
关于积分的说明 14320837
捐赠科研通 4496199
什么是DOI,文献DOI怎么找? 2463191
邀请新用户注册赠送积分活动 1452145
关于科研通互助平台的介绍 1427336