Using a patient‐specific diffusion model to generate CBCT‐based synthetic CTs for CBCT‐guided adaptive radiotherapy

影像引导放射治疗 锥束ct 放射治疗 医学影像学 医学 计算机科学 核医学 人工智能 医学物理学 计算机断层摄影术 放射科
作者
Xiaoqian Chen,Richard L. J. Qiu,Tonghe Wang,Chih‐Wei Chang,Xuxin Chen,Joseph W. Shelton,Aparna H. Kesarwala,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17463
摘要

Abstract Background Cone beam computed tomography (CBCT) can be used to evaluate the inter‐fraction anatomical changes during the entire course for image‐guided radiotherapy (IGRT). However, CBCT artifacts from various sources restrict the full application of CBCT‐guided adaptive radiation therapy (ART). Purpose Inter‐fraction anatomical changes during ART, including variations in tumor size and normal tissue anatomy, can affect radiation therapy (RT) efficacy. Acquiring high‐quality CBCT images that accurately capture patient‐ and fraction‐specific (PFS) anatomical changes is crucial for successful IGRT. Methods To enhance CBCT image quality, we proposed PFS lung diffusion models (PFS‐LDMs). The proposed PFS models use a pre‐trained general lung diffusion model (GLDM) as a baseline, which is trained on historical deformed CBCT (dCBCT)‐planning CT (pCT) paired data. For a given patient, a new PFS model is fine‐tuned on a CBCT‐deformed pCT (dpCT) pair after each fraction to learn the PFS knowledge for generating personalized synthetic CT (sCT) with quality comparable to pCT or dpCT. The learned PFS knowledge is the specific mapping relationships, including personal inter‐fraction anatomical changes between personalized CBCT‐dpCT pairs. The PFS‐LDMs were evaluated on an institutional lung cancer dataset, quantified by mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), normalized cross‐correlation (NCC), and structural similarity index measure (SSIM) metrics. We also compared our PFS‐LDMs with a mainstream GAN‐based model, demonstrating that our PFS fine‐tuning strategy could be applied to existing generative models. Results Our models showed remarkable improvements across all four evaluation metrics. The proposed PFS‐LDMs outperformed the GLDM, demonstrating the effectiveness of our proposed fine‐tuning strategy. The PFS model fine‐tuned with CBCT images from four prior fractions, reduced the MAE from 103.95 to 15.96 Hounsfield units (HU), and increased the mean PSNR, NCC, and SSIM from 25.36 dB to 33.57 dB, 0.77 to 0.98, and 0.75 to 0.97, respectively. Applying our PFS fine‐tuning strategy to a Cycle GAN model also showed improvements, with all four fine‐tuned PFS Cycle GAN (PFS‐CG) models outperforming the general Cycle GAN model. Overall, our proposed PFS fine‐tuning strategy improved CBCT image quality compared to both the pre‐correction and non‐fine‐tuned general models, with our proposed PFS‐LDMs yielding better performance than the GAN‐based model across all metrics. Conclusions Our proposed PFS‐LDMs significantly improve CBCT image quality with increased HU accuracy and fewer artifacts, thus better capturing inter‐fraction anatomical changes. This lays the groundwork for enabling CBCT‐based ART, which could enhance clinical efficiency and achieve personalized high‐precision treatment by accounting for inter‐fraction anatomical changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓁66完成签到,获得积分10
1秒前
3秒前
4秒前
张皓123发布了新的文献求助10
5秒前
万能图书馆应助科研螺丝采纳,获得10
5秒前
1MENINA1完成签到 ,获得积分10
6秒前
6秒前
元宝团子完成签到,获得积分10
6秒前
8秒前
9秒前
小马甲应助bly采纳,获得10
9秒前
Mayra发布了新的文献求助10
9秒前
zhlh完成签到,获得积分10
10秒前
冷静的伊完成签到,获得积分10
10秒前
张皓123完成签到,获得积分10
10秒前
journey完成签到 ,获得积分10
11秒前
12秒前
12秒前
灵巧的坤发布了新的文献求助10
13秒前
星辰大海应助纯真硬币采纳,获得10
14秒前
KhalilHao完成签到,获得积分10
14秒前
西伯侯完成签到,获得积分10
14秒前
14秒前
15秒前
好好完成签到,获得积分20
16秒前
Diss发布了新的文献求助30
16秒前
16秒前
17秒前
机智斩发布了新的文献求助10
17秒前
刘一三完成签到 ,获得积分10
17秒前
852发布了新的文献求助10
17秒前
甜甜语薇完成签到,获得积分10
18秒前
伯赏人杰完成签到,获得积分10
19秒前
好好发布了新的文献求助10
19秒前
21秒前
科研螺丝发布了新的文献求助10
21秒前
yy发布了新的文献求助10
22秒前
清脆半邪完成签到,获得积分10
23秒前
666完成签到 ,获得积分10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194