Using a patient‐specific diffusion model to generate CBCT‐based synthetic CTs for CBCT‐guided adaptive radiotherapy

影像引导放射治疗 锥束ct 放射治疗 医学影像学 医学 计算机科学 核医学 人工智能 医学物理学 计算机断层摄影术 放射科
作者
Xiaoqian Chen,Richard L. J. Qiu,Tonghe Wang,Chih‐Wei Chang,Xuxin Chen,Joseph W. Shelton,Aparna H. Kesarwala,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17463
摘要

Abstract Background Cone beam computed tomography (CBCT) can be used to evaluate the inter‐fraction anatomical changes during the entire course for image‐guided radiotherapy (IGRT). However, CBCT artifacts from various sources restrict the full application of CBCT‐guided adaptive radiation therapy (ART). Purpose Inter‐fraction anatomical changes during ART, including variations in tumor size and normal tissue anatomy, can affect radiation therapy (RT) efficacy. Acquiring high‐quality CBCT images that accurately capture patient‐ and fraction‐specific (PFS) anatomical changes is crucial for successful IGRT. Methods To enhance CBCT image quality, we proposed PFS lung diffusion models (PFS‐LDMs). The proposed PFS models use a pre‐trained general lung diffusion model (GLDM) as a baseline, which is trained on historical deformed CBCT (dCBCT)‐planning CT (pCT) paired data. For a given patient, a new PFS model is fine‐tuned on a CBCT‐deformed pCT (dpCT) pair after each fraction to learn the PFS knowledge for generating personalized synthetic CT (sCT) with quality comparable to pCT or dpCT. The learned PFS knowledge is the specific mapping relationships, including personal inter‐fraction anatomical changes between personalized CBCT‐dpCT pairs. The PFS‐LDMs were evaluated on an institutional lung cancer dataset, quantified by mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), normalized cross‐correlation (NCC), and structural similarity index measure (SSIM) metrics. We also compared our PFS‐LDMs with a mainstream GAN‐based model, demonstrating that our PFS fine‐tuning strategy could be applied to existing generative models. Results Our models showed remarkable improvements across all four evaluation metrics. The proposed PFS‐LDMs outperformed the GLDM, demonstrating the effectiveness of our proposed fine‐tuning strategy. The PFS model fine‐tuned with CBCT images from four prior fractions, reduced the MAE from 103.95 to 15.96 Hounsfield units (HU), and increased the mean PSNR, NCC, and SSIM from 25.36 dB to 33.57 dB, 0.77 to 0.98, and 0.75 to 0.97, respectively. Applying our PFS fine‐tuning strategy to a Cycle GAN model also showed improvements, with all four fine‐tuned PFS Cycle GAN (PFS‐CG) models outperforming the general Cycle GAN model. Overall, our proposed PFS fine‐tuning strategy improved CBCT image quality compared to both the pre‐correction and non‐fine‐tuned general models, with our proposed PFS‐LDMs yielding better performance than the GAN‐based model across all metrics. Conclusions Our proposed PFS‐LDMs significantly improve CBCT image quality with increased HU accuracy and fewer artifacts, thus better capturing inter‐fraction anatomical changes. This lays the groundwork for enabling CBCT‐based ART, which could enhance clinical efficiency and achieve personalized high‐precision treatment by accounting for inter‐fraction anatomical changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
搬砖工完成签到,获得积分10
1秒前
Lucas应助圈圈采纳,获得10
2秒前
NexusExplorer应助韭菜盒子采纳,获得10
2秒前
2秒前
Harlotte发布了新的文献求助10
2秒前
就是我完成签到,获得积分10
2秒前
单薄凌蝶应助文件撤销了驳回
2秒前
王小明完成签到,获得积分10
2秒前
OKO完成签到,获得积分10
2秒前
yy完成签到 ,获得积分10
3秒前
丸子放盆里完成签到,获得积分10
3秒前
疯狂的青亦完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
5秒前
zink发布了新的文献求助10
5秒前
小杰完成签到 ,获得积分10
5秒前
qaq发布了新的文献求助10
5秒前
子时月发布了新的文献求助10
6秒前
7秒前
是冬天完成签到 ,获得积分10
7秒前
Lxxx_7完成签到 ,获得积分10
7秒前
12完成签到 ,获得积分10
8秒前
sai发布了新的文献求助10
8秒前
CodeCraft应助wzxxxx采纳,获得10
9秒前
Andy完成签到 ,获得积分10
9秒前
小可完成签到 ,获得积分10
10秒前
斯文败类应助shanjianjie采纳,获得20
10秒前
笋蒸鱼发布了新的文献求助10
10秒前
1321完成签到,获得积分10
10秒前
huahua完成签到,获得积分10
10秒前
66应助马佳凯采纳,获得10
13秒前
林溪完成签到,获得积分10
13秒前
Amber应助CTX采纳,获得10
13秒前
lan完成签到 ,获得积分10
13秒前
共享精神应助Elaine采纳,获得10
15秒前
15秒前
安静一曲完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740