Utility-Aware Optimal Data Selection for Differentially Private Federated Learning in IoV

计算机科学 选择(遗传算法) 数据建模 机器学习 人工智能 计算机网络 数据库
作者
Jiancong Zhang,Shining Li,Changhao Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (20): 33326-33336
标识
DOI:10.1109/jiot.2024.3427132
摘要

Federated learning coordinates distributed data sets to train models, which brings the significant impact of data selection on model performance. Personalized differential privacy, however, introduces heterogeneity into the vehicular data sets: the higher privacy protection may reduce the contribution of local models to model convergence. Therefore, the goal of this article is to dynamically optimize the combination of data sets to tackle the heterogeneity in differential private federated learning in Internet of Vehicles. This is extremely challenging without direct data access and a visible training process. Therefore, we propose an efficient hierarchical data selection method. First, the utility is evaluated using the convergence bound derived from the noise function and the cost function. Accordingly, a collection of high-value clients is selected to maximize the potential contribution of the combination to the global model. Then, we design an optimization function based on the unknown variables within the convergence bound and develop a low-complexity algorithm to approximate the sampling probability. Meanwhile, the aggregation weight of each model is adjusted to ensure unbiased estimation. Experimental results on two real-world trajectory data sets show that the scheme can reduce the meter error by 8.90% and 15.97%, respectively, and improve the convergence speed by 23.9% and 27.1%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落叶知秋发布了新的文献求助10
1秒前
枚青青发布了新的文献求助10
2秒前
化石吟完成签到,获得积分10
3秒前
4秒前
猪猪侠完成签到,获得积分10
5秒前
fafa完成签到,获得积分10
5秒前
mi完成签到,获得积分10
6秒前
aaa给aaa的求助进行了留言
7秒前
Owen应助qiao采纳,获得10
8秒前
8秒前
9秒前
Lulu发布了新的文献求助10
10秒前
满眼星辰发布了新的文献求助10
11秒前
宋晓静发布了新的文献求助10
13秒前
15秒前
19秒前
zhendou应助DanYang采纳,获得10
19秒前
ccc发布了新的文献求助20
19秒前
19秒前
神勇的人雄完成签到,获得积分10
19秒前
20秒前
LiM发布了新的文献求助10
20秒前
wch666完成签到,获得积分10
21秒前
初青酱完成签到 ,获得积分10
21秒前
笑笑完成签到,获得积分10
21秒前
活力的尔阳应助ll采纳,获得10
22秒前
Poon发布了新的文献求助10
24秒前
旱钮发布了新的文献求助10
25秒前
项之桃完成签到,获得积分10
26秒前
小蘑菇应助LiM采纳,获得10
26秒前
英俊的铭应助平淡南霜采纳,获得10
27秒前
28秒前
大个应助端庄洋葱采纳,获得10
29秒前
弹指一挥间完成签到,获得积分10
29秒前
胡须完成签到,获得积分10
30秒前
zgping完成签到,获得积分10
30秒前
31秒前
SSY完成签到,获得积分10
32秒前
32秒前
烟花应助Jeo采纳,获得30
33秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464525
求助须知:如何正确求助?哪些是违规求助? 3057942
关于积分的说明 9059097
捐赠科研通 2748071
什么是DOI,文献DOI怎么找? 1507718
科研通“疑难数据库(出版商)”最低求助积分说明 696632
邀请新用户注册赠送积分活动 696290