Optimal energy management via day-ahead scheduling considering renewable energy and demand response in smart grids

需求响应 可再生能源 智能电网 调度(生产过程) 计算机科学 能源管理 能量(信号处理) 分布式计算 数学优化 工程类 运营管理 电气工程 数学 统计
作者
Lyu Guanghua,Hisham Alghamdi,Ghulam Hafeez,Sajjad Ali,Farrukh Aslam Khan,M.I. Khan,Liu Jun Jun
出处
期刊:Isa Transactions [Elsevier]
卷期号:154: 268-284 被引量:7
标识
DOI:10.1016/j.isatra.2024.08.032
摘要

The energy optimization in smart power grids (SPGs) is crucial for ensuring efficient, sustainable, and cost-effective energy management. However, the uncertainty and stochastic nature of distributed generations (DGs) and loads pose significant challenges to optimization models. In this study, we propose a novel optimization model that addresses these challenges by employing a probabilistic method to model the uncertain behavior of DGs and loads. Our model utilizes the multi-objective wind-driven optimization (MOWDO) technique with fuzzy mechanism to simultaneously address economic, environmental, and comfort concerns in SPGs. Unlike existing models, our approach incorporates a hybrid demand response (HDR), combining price-based and incentive-based DR to mitigate rebound peaks and ensure stable and efficient energy usage. The model also introduces battery energy storage systems (BESS) as environmentally friendly backup sources, reducing reliance on fossil fuels and promoting sustainability. We assess the developed model across various distinct configurations: optimizing operational costs and pollution emissions independently with/without DR, optimizing both operational costs and pollution emissions concurrently with/without DR, and optimizing operational costs, user comfort, and pollution emissions simultaneously with/without DR. The experimental findings reveal that the developed model performs better than the multi-objective bird swarm optimization (MOBSO) algorithm across metrics, including operational cost, user comfort, and pollution emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽老九完成签到,获得积分10
刚刚
1秒前
爱吃肉肉的手性分子完成签到,获得积分10
2秒前
土豆完成签到 ,获得积分10
3秒前
3秒前
清爽老九发布了新的文献求助10
6秒前
耶嘿发布了新的文献求助10
8秒前
9秒前
KekeJ发布了新的文献求助10
10秒前
微凉完成签到 ,获得积分10
10秒前
Magic完成签到,获得积分10
10秒前
青糯完成签到 ,获得积分10
14秒前
希望天下0贩的0应助Jodie采纳,获得10
15秒前
15秒前
19秒前
天天快乐应助微笑采纳,获得10
20秒前
21秒前
小二郎应助我要做科研狗采纳,获得30
23秒前
24秒前
25秒前
科目三应助Bonnienuit采纳,获得10
25秒前
海盗船长发布了新的文献求助10
26秒前
28秒前
jingcheng完成签到,获得积分10
29秒前
愉快碧凡发布了新的文献求助10
29秒前
30秒前
30秒前
Jodie发布了新的文献求助10
32秒前
orixero应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
打打应助科研通管家采纳,获得10
34秒前
Ava应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
彭于晏应助科研通管家采纳,获得10
34秒前
小不点应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558022
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670064
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514849
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459630