Optimal energy management via day-ahead scheduling considering renewable energy and demand response in smart grids

需求响应 可再生能源 智能电网 调度(生产过程) 计算机科学 能源管理 能量(信号处理) 分布式计算 数学优化 工程类 运营管理 电气工程 数学 统计
作者
Lyu-Guang Hua,Hisham Alghamdi,Ghulam Hafeez,Sajjad Ali,Farrukh Aslam Khan,Muhammad Iftikhar Khan,Liu Jun Jun
出处
期刊:Isa Transactions [Elsevier BV]
标识
DOI:10.1016/j.isatra.2024.08.032
摘要

The energy optimization in smart power grids (SPGs) is crucial for ensuring efficient, sustainable, and cost-effective energy management. However, the uncertainty and stochastic nature of distributed generations (DGs) and loads pose significant challenges to optimization models. In this study, we propose a novel optimization model that addresses these challenges by employing a probabilistic method to model the uncertain behavior of DGs and loads. Our model utilizes the multi-objective wind-driven optimization (MOWDO) technique with fuzzy mechanism to simultaneously address economic, environmental, and comfort concerns in SPGs. Unlike existing models, our approach incorporates a hybrid demand response (HDR), combining price-based and incentive-based DR to mitigate rebound peaks and ensure stable and efficient energy usage. The model also introduces battery energy storage systems (BESS) as environmentally friendly backup sources, reducing reliance on fossil fuels and promoting sustainability. We assess the developed model across various distinct configurations: optimizing operational costs and pollution emissions independently with/without DR, optimizing both operational costs and pollution emissions concurrently with/without DR, and optimizing operational costs, user comfort, and pollution emissions simultaneously with/without DR. The experimental findings reveal that the developed model performs better than the multi-objective bird swarm optimization (MOBSO) algorithm across metrics, including operational cost, user comfort, and pollution emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙福禄应助花花521采纳,获得10
1秒前
Lv完成签到,获得积分10
2秒前
汉堡包应助爱学习的曼卉采纳,获得10
2秒前
12345678发布了新的文献求助10
2秒前
深情安青应助麻雀采纳,获得10
3秒前
3秒前
3秒前
内向忆南发布了新的文献求助10
3秒前
BB婷、完成签到,获得积分10
4秒前
EED发布了新的文献求助10
4秒前
4秒前
5秒前
传奇3应助Yelanjiao采纳,获得10
6秒前
7秒前
Rondab应助Amanda采纳,获得10
7秒前
7秒前
猫了个喵完成签到,获得积分10
8秒前
8秒前
9秒前
独特的哈密瓜数据线完成签到,获得积分10
9秒前
111111完成签到,获得积分10
9秒前
吴晓娟完成签到 ,获得积分10
10秒前
叶文轩发布了新的文献求助10
10秒前
hhhh完成签到,获得积分20
10秒前
11秒前
dd发布了新的文献求助10
12秒前
Theo发布了新的文献求助10
13秒前
蒋念寒发布了新的文献求助10
13秒前
内向忆南完成签到,获得积分10
13秒前
张润琦完成签到,获得积分10
14秒前
pzh应助Joan_89采纳,获得20
14秒前
15秒前
SciGPT应助LWJ采纳,获得10
15秒前
11111完成签到,获得积分10
17秒前
搜集达人应助粗犷的谷秋采纳,获得10
18秒前
领导范儿应助玉玉采纳,获得10
18秒前
Kate发布了新的文献求助10
19秒前
20秒前
烟花应助EED采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452