Optimal energy management via day-ahead scheduling considering renewable energy and demand response in smart grids

需求响应 可再生能源 智能电网 调度(生产过程) 计算机科学 能源管理 能量(信号处理) 分布式计算 数学优化 工程类 运营管理 电气工程 数学 统计
作者
Lyu Guanghua,Hisham Alghamdi,Ghulam Hafeez,Sajjad Ali,Farrukh Aslam Khan,M.I. Khan,Liu Jun Jun
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:154: 268-284 被引量:7
标识
DOI:10.1016/j.isatra.2024.08.032
摘要

The energy optimization in smart power grids (SPGs) is crucial for ensuring efficient, sustainable, and cost-effective energy management. However, the uncertainty and stochastic nature of distributed generations (DGs) and loads pose significant challenges to optimization models. In this study, we propose a novel optimization model that addresses these challenges by employing a probabilistic method to model the uncertain behavior of DGs and loads. Our model utilizes the multi-objective wind-driven optimization (MOWDO) technique with fuzzy mechanism to simultaneously address economic, environmental, and comfort concerns in SPGs. Unlike existing models, our approach incorporates a hybrid demand response (HDR), combining price-based and incentive-based DR to mitigate rebound peaks and ensure stable and efficient energy usage. The model also introduces battery energy storage systems (BESS) as environmentally friendly backup sources, reducing reliance on fossil fuels and promoting sustainability. We assess the developed model across various distinct configurations: optimizing operational costs and pollution emissions independently with/without DR, optimizing both operational costs and pollution emissions concurrently with/without DR, and optimizing operational costs, user comfort, and pollution emissions simultaneously with/without DR. The experimental findings reveal that the developed model performs better than the multi-objective bird swarm optimization (MOBSO) algorithm across metrics, including operational cost, user comfort, and pollution emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要选李白完成签到 ,获得积分10
刚刚
开心果完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
Sampson完成签到,获得积分10
3秒前
3秒前
斯多姆发布了新的文献求助10
4秒前
脑洞疼应助Lionking采纳,获得10
4秒前
4秒前
浮游应助耍酷的伟祺采纳,获得10
5秒前
5秒前
5秒前
刘承昭发布了新的文献求助20
6秒前
6秒前
HB完成签到,获得积分10
6秒前
Akim应助芋泥采纳,获得10
6秒前
6秒前
顺心夜南完成签到,获得积分10
7秒前
苹果完成签到,获得积分10
7秒前
完美世界应助农艳宁采纳,获得10
8秒前
咸蛋超人完成签到,获得积分10
8秒前
xml完成签到,获得积分10
9秒前
皮皮完成签到 ,获得积分10
10秒前
xy完成签到,获得积分10
10秒前
爱笑的冷风完成签到,获得积分10
10秒前
ForeverYou发布了新的文献求助10
10秒前
甜蜜的马里奥完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
咸蛋超人发布了新的文献求助10
12秒前
MMMM完成签到,获得积分10
13秒前
柔弱无血关注了科研通微信公众号
14秒前
14秒前
89757完成签到,获得积分10
15秒前
信徒发布了新的文献求助10
15秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237652
求助须知:如何正确求助?哪些是违规求助? 4405439
关于积分的说明 13710369
捐赠科研通 4273674
什么是DOI,文献DOI怎么找? 2345098
邀请新用户注册赠送积分活动 1342233
关于科研通互助平台的介绍 1300081