From general AI to custom AI: the effects of generative conversational AI’s cognitive and emotional conversational skills on user's guidance

计算机科学 生成语法 认知 个性化 情商 人工智能 结构方程建模 用户参与度 独创性 认知心理学 心理学 社会心理学 创造力 万维网 机器学习 神经科学
作者
Kun Wang,Zhao Pan,Yaobin Lu
出处
期刊:Kybernetes [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/k-04-2024-0894
摘要

Purpose Generative conversational artificial intelligence (AI) demonstrates powerful conversational skills for general tasks but requires customization for specific tasks. The quality of a custom generative conversational AI highly depends on users’ guidance, which has not been studied by previous research. This study uses social exchange theory to examine how generative conversational AI’s cognitive and emotional conversational skills affect users’ guidance through different types of user engagement, and how these effects are moderated by users’ relationship norm orientation. Design/methodology/approach Based on data collected from 589 actual users using a two-wave survey, this study employed partial least squares structural equation modeling to analyze the proposed hypotheses. Additional analyses were performed to test the robustness of our research model and results. Findings The results reveal that cognitive conversational skills (i.e. tailored and creative responses) positively affected cognitive and emotional engagement. However, understanding emotion influenced cognitive engagement but not emotional engagement, and empathic concern influenced emotional engagement but not cognitive engagement. In addition, cognitive and emotional engagement positively affected users’ guidance. Further, relationship norm orientation moderated some of these effects such that the impact of user engagement on user guidance was stronger for communal-oriented users than for exchange-oriented users. Originality/value First, drawing on social exchange theory, this study empirically examined the drivers of users’ guidance in the context of generative conversational AI, which may enrich the user guidance literature. Second, this study revealed the moderating role of relationship norm orientation in influencing the effect of user engagement on users’ guidance. The findings will deepen our understanding of users’ guidance. Third, the findings provide practical guidelines for designing generative conversational AI from a general AI to a custom AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳莹晓发布了新的文献求助10
1秒前
苹果飞绿完成签到 ,获得积分10
1秒前
3秒前
柒月完成签到,获得积分10
4秒前
殷宏宇关注了科研通微信公众号
4秒前
慕青应助约翰森尼亚大使采纳,获得10
4秒前
5秒前
一颗赛艇完成签到 ,获得积分20
6秒前
善学以致用应助xiao采纳,获得10
7秒前
7秒前
你针豆完成签到,获得积分20
7秒前
8秒前
liu完成签到 ,获得积分10
8秒前
柒月发布了新的文献求助10
9秒前
10秒前
加油鸭鸭鸭完成签到,获得积分10
11秒前
11秒前
专注世界完成签到,获得积分10
11秒前
桃酥完成签到,获得积分10
12秒前
SCI随缘发布了新的文献求助10
13秒前
15秒前
17秒前
么么叽完成签到,获得积分10
17秒前
17秒前
wyh完成签到,获得积分10
18秒前
专注世界发布了新的文献求助10
19秒前
顾矜应助shenmo18采纳,获得10
19秒前
依依完成签到,获得积分20
19秒前
19秒前
Daria完成签到,获得积分10
20秒前
21秒前
xiao发布了新的文献求助10
21秒前
蜜柚子完成签到 ,获得积分10
21秒前
彩色觅柔发布了新的文献求助10
21秒前
自觉士萧发布了新的文献求助10
25秒前
25秒前
胖小羊发布了新的文献求助10
27秒前
起风了发布了新的文献求助10
27秒前
赘婿应助小羊爱吃蓝莓采纳,获得10
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825