Understanding SNS use reduction from the perspective of the cognitive-affective model

透视图(图形) 认知 认知心理学 心理学 还原(数学) 计算机科学 人工智能 神经科学 几何学 数学
作者
Pedro Nascimento,Tiago Oliveira,Joana Neves
出处
期刊:Internet Research [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/intr-04-2023-0239
摘要

Purpose This investigation delves into the elements influencing social networking sites (SNS) use reduction behavior through the lens of the cognitive-affective (CA) model to understand the driving forces behind the decline in SNS use. Design/methodology/approach Following the CA model, this research introduces a theoretical framework that integrates the emotions of regret and guilt along with the principles of cognitive dissonance theory. The proposed theoretical framework was subjected to empirical validation, utilizing 453 responses gathered from Instagram users. Findings The results suggest that the emotions of regret and guilt have a favorable impact on users’ intention to decrease their SNS usage, with cognitive dissonance exerting an indirect positive influence through these emotions. Additionally, further examination unveils that fear moderates the connection between users’ SNS addiction and the CA components. Research limitations/implications Additional cognitive and affective responses may influence the intricate relation between SNS addiction and SNS use reduction intention. Originality/value This research contributes to the existing body of knowledge on the information system use lifecycle by examining shifts in user behavior, notably the transition from excessive use to the adoption of use reduction strategies. Furthermore, it sheds light on the intricate role of cognitive dissonance in elucidating the intention to reduce SNS use from the perspective of the CA model. Additionally, this study advances our current understanding of how the fear of negative consequences arising from excessive usage plays a role as a moderating factor in elucidating the underlying internal factors related to reducing SNS usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌萌发布了新的文献求助50
刚刚
向日葵发布了新的文献求助10
1秒前
1秒前
2秒前
medaW完成签到,获得积分10
2秒前
李爱国应助weiut采纳,获得20
2秒前
苏卿应助至若春和景明采纳,获得10
2秒前
科研通AI5应助zz采纳,获得10
2秒前
王王完成签到 ,获得积分10
3秒前
3秒前
坚强黎昕发布了新的文献求助10
3秒前
zwenng发布了新的文献求助10
3秒前
图图完成签到 ,获得积分10
4秒前
爆米花应助苏木采纳,获得10
5秒前
tesla发布了新的文献求助10
6秒前
瑶瑶公主会刷盾完成签到 ,获得积分10
6秒前
jm发布了新的文献求助10
7秒前
7秒前
抽烟不完成签到 ,获得积分10
7秒前
没有生椰的拿铁完成签到,获得积分20
8秒前
8秒前
西大喜发布了新的文献求助10
10秒前
10秒前
11秒前
谨慎小翠发布了新的文献求助10
11秒前
科目三应助淡定的萝莉采纳,获得10
12秒前
12秒前
13秒前
胖丹完成签到,获得积分20
13秒前
zcydbttj2011发布了新的文献求助10
14秒前
14秒前
痞老板完成签到,获得积分10
14秒前
wanci应助Aseaxin采纳,获得10
15秒前
Ava应助hmj007采纳,获得10
15秒前
长山小春完成签到,获得积分10
15秒前
荣浩宇发布了新的文献求助10
16秒前
tesla发布了新的文献求助10
16秒前
酷酷珠发布了新的文献求助10
16秒前
充电宝应助zqxu采纳,获得30
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552796
求助须知:如何正确求助?哪些是违规求助? 3128883
关于积分的说明 9379843
捐赠科研通 2828004
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725605
科研通“疑难数据库(出版商)”最低求助积分说明 715056