重编程
伤口愈合
细胞生物学
角质形成细胞
癌症研究
化学
生物
免疫学
细胞
遗传学
生物化学
细胞培养
作者
Andrew M. Overmiller,Akihiko Uchiyama,Emma Hope,Subhashree Nayak,C. O'Neill,Kowser Hasneen,Yiwen Chen,Faiza Naz,Stefania Dell’Orso,Stephen R. Brooks,Kan Jiang,Maria I. Morasso.
出处
期刊:JCI insight
[American Society for Clinical Investigation]
日期:2024-10-31
标识
DOI:10.1172/jci.insight.182844
摘要
Cutaneous wound healing is a slow process that often terminates with permanent scarring while oral wounds, in contrast, regenerate damage faster. Unique molecular networks in epidermal and oral epithelial keratinocytes contribute to the tissue-specific response to wounding, but key factors that establish those networks and how the keratinocytes interact with their cellular environment remain to be elucidated. The transcription factor PITX1 is highly expressed in the oral epithelium but is undetectable in cutaneous keratinocytes. To delineate if PITX1 contributes to oral keratinocyte identity, cell-cell interactions, and the improved wound healing capabilities, we ectopically expressed PITX1 in the epidermis of murine skin. Using comparative analysis of murine skin and oral (buccal) mucosa with scRNA-seq and spatial transcriptomics, we found that PITX1 expression enhances epidermal keratinocyte migration, proliferation, and alters differentiation to a quasi-oral keratinocyte state. PITX1+ keratinocytes reprogram intercellular communication between skin-resident cells to mirror buccal tissue while also stimulating the influx of neutrophils that establish a pro-inflammatory environment. Furthermore, PITX1+ skin heals significantly faster than control skin via increased keratinocyte activation and migration and a tunable inflammatory environment. These results illustrate that PITX1 programs oral keratinocyte identity and cellular interactions while also revealing critical downstream networks that promote wound closure.
科研通智能强力驱动
Strongly Powered by AbleSci AI