方解石
扁桃体
化学
生物矿化
结晶
等温滴定量热法
碳酸盐
碳酸钙
成核
化学工程
矿物学
有机化学
物理化学
肽
生物化学
工程类
作者
Mingyi Zhang,Ying Chen,Chunhui Wu,Renyu Zheng,Ying Xia,Emily G. Saccuzzo,Thi Kim Hoang Trinh,Evan Angelo Quimada Mondarte,Elias Nakouzi,Behzad Rad,Benjamin A. Legg,Wendy J. Shaw,Jinhui Tao,James J. De Yoreo,Chun‐Long Chen
标识
DOI:10.1073/pnas.2412358121
摘要
The extensive deposits of calcium carbonate (CaCO 3 ) generated by marine organisms constitute the largest and oldest carbon dioxide (CO 2 ) reservoir. These organisms utilize macromolecules like peptides and proteins to facilitate the nucleation and growth of carbonate minerals, serving as an effective method for CO 2 sequestration. However, the precise mechanisms behind this process remain elusive. In this study, we report the use of sequence-defined peptoids, a class of peptidomimetics, to achieve the accelerated calcite step growth kinetics with the molecular level mechanistic understanding. By designing peptoids with hydrophilic and hydrophobic blocks, we systematically investigated the acceleration in step growth rate of calcite crystals using in situ atomic force microscopy (AFM), varying peptoid sequences and concentrations, CaCO 3 supersaturations, and the ratio of Ca 2+ / HCO 3 − . Mechanistic studies using NMR, three-dimensional fast force mapping (3D FFM), and isothermal titration calorimetry (ITC) were conducted to reveal the interactions of peptoids with Ca 2+ and HCO 3 − ions in solution, as well as the effect of peptoids on solvation and energetics of calcite crystal surface. Our results indicate the multiple roles of peptoid in facilitating HCO 3 − deprotonation, Ca 2+ desolvation, and the disruption of interfacial hydration layers of the calcite surface, which collectively contribute to a peptoid-induced acceleration of calcite growth. These findings provide guidelines for future design of sequence-specific biomimetic polymers as crystallization promoters, offering potential applications in environmental remediation (such as CO 2 sequestration), biomedical engineering, and energy storage where fast crystallization is preferred.
科研通智能强力驱动
Strongly Powered by AbleSci AI