Cell‐Membrane‐Inspired Ultrathin Silica Nanochannels Coating for Long‐Term Stable Photoelectrocatalysis with Enhanced Performance

材料科学 纳米材料 涂层 光电流 纳米技术 降级(电信) 溶解 纳米棒 分解水 化学工程 催化作用 化学 光催化 光电子学 计算机科学 生物化学 工程类 电信
作者
Wenyan Yan,Lin Zhou,Zisheng Luo,Shenghua Ding,Dongsheng Li,Xingyu Lin
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202407686
摘要

Abstract Photoelectrocatalysis has attracted significant attention for water splitting and contaminant degradation. However, the lifetime of photoelectrocatalysis devices is hampered by the severe instability and photocorrosion of the photo‐active nanomaterial on the photoelectrode, which is a key limitation to realizing industrialization. Typically, the conventional protection strategy of photoelectrodes usually suffers from the trade‐off between the photoelectrocatalytic activity and stability. Inspired by biological cell membrane with water channels, here a highly permeable and ultrathin silica coating with ultrasmall straight nanochannels is in situ grown that stabilizes the photoelectrode. These ultrasmall channels boost photoelectrocatalysis by accelerating water transport and reducing the reaction energy within the confined nanochannels. Specifically, the ultrathin coating imparts significant mechanical and structural stability to the photo‐active nanomaterial, thereby preventing its detachment, dissolution, and crystal damage without compromising performance. As a result, the protected photoelectrode exhibits enhanced water splitting activity and excellent stability over 120 h, whereas the photocurrent of the unprotected photoelectrode degrades rapidly. Meanwhile, the coated photoelectrode also exhibits superior photoelectrocatalytic degradation efficiency (>97%), even after the 10th cycle. This strategy is facile and universal and can be extended to construct other stable and high‐performance electrodes for promoting photoelectrocatalysis in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqq发布了新的文献求助10
刚刚
贝涛完成签到,获得积分10
刚刚
lilac发布了新的文献求助10
1秒前
2秒前
2秒前
祯果粒完成签到,获得积分10
2秒前
2秒前
Yuxzzr发布了新的文献求助10
3秒前
张永乐完成签到,获得积分10
3秒前
杨涵发布了新的文献求助10
4秒前
哎嘤斯坦完成签到,获得积分10
4秒前
阿瓜完成签到 ,获得积分10
5秒前
5秒前
小二郎应助复杂元瑶采纳,获得10
6秒前
科研通AI5应助会飞的鱼161采纳,获得10
6秒前
6秒前
郑qqqq发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Pendragon发布了新的文献求助10
7秒前
7秒前
小苗完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI2S应助奋斗不止采纳,获得10
8秒前
9秒前
9秒前
10秒前
黑桃完成签到,获得积分10
10秒前
科研通AI5应助zzh12138采纳,获得10
11秒前
wanci应助贾败采纳,获得10
11秒前
败者食尘发布了新的文献求助10
11秒前
静夜谧思发布了新的文献求助10
11秒前
lilac完成签到,获得积分20
11秒前
12秒前
铁盐君发布了新的文献求助10
12秒前
打打应助郑qqqq采纳,获得10
12秒前
12秒前
亮晶晶发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546676
求助须知:如何正确求助?哪些是违规求助? 3123726
关于积分的说明 9356475
捐赠科研通 2822353
什么是DOI,文献DOI怎么找? 1551369
邀请新用户注册赠送积分活动 723332
科研通“疑难数据库(出版商)”最低求助积分说明 713721