已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early detection of gray blight in tea leaves and rapid screening of resistance varieties by hyperspectral imaging technology

高光谱成像 人工智能 支持向量机 计算机科学 模式识别(心理学) 卷积神经网络
作者
Wei Ma,He Li,Yang Xu,Shuangshuang Wang,Xinyue Yin,Kai Fan,Zhaotang Ding,Yu Wang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13756
摘要

Abstract BACKGROUND Gray blight (GB) is a significant disease of tea leaves, posing a severe threat to both the yield and quality. In this study, the process of leaf infection by a pathogenic isolate of the GB disease (DDZ‐6) was simulated. Hyperspectral images of normal leaves, infected leaves without symptoms, and infected leaves with mild and moderate symptoms were collected. Combining convolution neural network (CNN), long short‐term memory (LSTM), and support vector machine (SVM) algorithms, the early detection model of GB disease, and the rapid screening model of resistant varieties were established. The generality of this method was verified by collecting datasets under field conditions. RESULTS The visible red‐light band demonstrated a pronounced responsiveness to GB disease, with three sensitive bands identified through rigorous screening processes utilizing uninformative variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and the successive projections algorithm (SPA). The 693, 727, and 766 nm bands emerged as highly sensitive indicators of GB. Under ideal conditions, the CARS‐LSTM model excelled in early detection of GB, achieving an accuracy of 92.6%. However, under field conditions, the combination of 693 and 727 nm bands integrated with a CNN provided the most effective early detection model, attaining an accuracy of 87.8%. For screening tea varieties resistant to GB, the SPA‐LSTM model excelled, achieving an accuracy of 82.9%. CONCLUSION This study provides a core algorithm for a GB disease instrument with detection capabilities, which is of great importance for the early prevention of GB disease in tea plantations. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yansitong发布了新的文献求助10
刚刚
我是你哥完成签到,获得积分10
1秒前
不安青牛举报奋斗的鞅求助涉嫌违规
2秒前
随心完成签到 ,获得积分10
2秒前
阳佟万言完成签到,获得积分10
6秒前
JamesPei应助狗头采纳,获得10
8秒前
阳佟万言发布了新的文献求助10
10秒前
11秒前
巧克力布朗尼完成签到,获得积分10
16秒前
活泼的楼房完成签到,获得积分20
16秒前
17秒前
17秒前
candy完成签到,获得积分10
19秒前
kokoko完成签到,获得积分10
20秒前
Hello应助阳佟万言采纳,获得10
22秒前
22秒前
Da完成签到,获得积分10
24秒前
25秒前
asw完成签到,获得积分20
26秒前
26秒前
asw发布了新的文献求助10
29秒前
起风了发布了新的文献求助10
30秒前
30秒前
31秒前
汉堡包应助asw采纳,获得10
35秒前
狗头发布了新的文献求助10
35秒前
Ava应助杨诚采纳,获得10
35秒前
36秒前
领导范儿应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
mmyhn应助科研通管家采纳,获得20
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
穿堂风完成签到 ,获得积分10
37秒前
HuiHui发布了新的文献求助10
39秒前
科yt完成签到 ,获得积分10
39秒前
45秒前
L.C.发布了新的文献求助50
48秒前
kongchanjie发布了新的文献求助10
49秒前
www发布了新的文献求助10
54秒前
L.C.完成签到,获得积分10
55秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154688
求助须知:如何正确求助?哪些是违规求助? 2805501
关于积分的说明 7865044
捐赠科研通 2463690
什么是DOI,文献DOI怎么找? 1311521
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601821