Leveraging programmed cell death patterns to predict prognosis and therapeutic sensitivity in OSCC

列线图 比例危险模型 肿瘤科 医学 单变量 癌症 生存分析 细胞 阶段(地层学) 免疫系统 多元统计 内科学 生物 免疫学 遗传学 古生物学 统计 数学
作者
An Wang,Chi Zhang,Yuhan Wang,Pengfei Diao,Jie Cheng
出处
期刊:Oral Diseases [Wiley]
被引量:1
标识
DOI:10.1111/odi.15139
摘要

Abstract Objectives Intricate associations between programmed cell death (PCD) and cancer development and treatment outcomes have been increasingly appreciated. Here, we integrated 12 PCD patterns to construct a novel biomarker, cell death index (CDI), for oral squamous cell carcinoma (OSCC) prognostication and therapeutic prediction. Materials and Methods Univariate Cox regression, Kaplan–Meier survival, and LASSO analyses were performed to construct the CDI. A nomogram combining CDI and selected clinicopathological parameters was established by multivariate Cox regression. The associations between CDI and immune landscape and therapeutic sensitivity were estimated. Single‐cell RNA‐seq data of OSCC was used to infer CDI genes in selected cell types and determine their expression along cell differentiation trajectory. Results Ten selected PCD genes derived a novel prognostic signature for OSCC. The predictive prognostic performance of CDI and nomogram was robust and superior across multiple independent patient cohorts. CDI was negatively associated with tumor‐infiltrating immune cell abundance and immunotherapeutic outcomes. Moreover, scRNA‐seq data reanalysis revealed that GSDMB, IL‐1A, PRKAA2, and SFRP1 from this signature were primarily expressed in cancer cells and involved in cell differentiation. Conclusions Our findings established CDI as a novel powerful predictor for prognosis and therapeutic response for OSCC and suggested its potential involvement in cancer cell differentiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性背包发布了新的文献求助10
刚刚
默客完成签到,获得积分10
1秒前
彭于晏应助阿甲采纳,获得10
3秒前
几几完成签到,获得积分10
4秒前
小玉米完成签到 ,获得积分10
4秒前
yummy发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助文艺书芹采纳,获得10
6秒前
CipherSage应助星月夜采纳,获得10
6秒前
zhangzhang完成签到,获得积分10
7秒前
恋雅颖月应助默客采纳,获得10
8秒前
科目三应助chrysan采纳,获得10
8秒前
8秒前
10秒前
10秒前
xz完成签到 ,获得积分10
11秒前
小蘑菇应助快乐梦松采纳,获得10
11秒前
葵花杜甫发布了新的文献求助20
11秒前
12秒前
潇洒的问夏完成签到 ,获得积分10
12秒前
卡卡完成签到,获得积分10
12秒前
无花果应助王慧颖采纳,获得10
13秒前
13秒前
13秒前
彭于晏应助开心夜云采纳,获得10
14秒前
斯文败类应助大喵采纳,获得10
14秒前
田様应助猪猪hero采纳,获得10
16秒前
17秒前
17秒前
畅快新之完成签到,获得积分10
17秒前
Loki完成签到,获得积分10
18秒前
勤恳立轩发布了新的文献求助10
19秒前
上官若男应助Summer采纳,获得10
20秒前
爆米花应助易达采纳,获得10
22秒前
殷楷霖发布了新的文献求助10
22秒前
22秒前
脑洞疼应助难过的远航采纳,获得10
23秒前
阿甲完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007