Manipulating Hardness to Construct Favorable Electrode Microstructures for All‐Solid‐State Batteries

材料科学 电解质 微观结构 硫化物 离子电导率 化学工程 氧化物 电极 复合材料 纳米技术 冶金 化学 工程类 物理化学
作者
Zhaoyang Chen,Qing Ai,Alae Eddine Lakraychi,Chaoshan Wu,Lihong Zhao,Liqun Guo,V. G. Hadjiev,Hua Guo,Zheng Fan,Jun Lou,Yanliang Liang,Yan Yao
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202403050
摘要

Abstract All‐solid‐state batteries hold great promise for achieving high energy densities. Fabrication of solid‐state electrodes involves cold compaction of the active material—typically an oxide—with a sulfide electrolyte, during which the softer sulfide particles deform and enwrap the harder oxide particles to afford an “active material‐in‐electrolyte” microstructure where the electrolyte forms a continuous ion‐conducting network. This mechanism however does not apply to emerging active materials that promise even higher energy densities like organic and sulfur‐based compounds. These materials are softer than sulfides and form unfavorable “electrolyte‐in‐active material” microstructures where ionic conduction is interrupted. Improvement of these electrodes is challenging in the absence of strategies to overcome the intrinsic material hardnesses. Here, it is demonstrated how the relative hardness difference can be reversed by simultaneously “softening” a sulfide electrolyte Li 6 PS 5 Cl by solvent treatment and “hardening” an organic material pyrene‐4,5,9,10‐tetraone (PTO) through partial lithiation. The lithiated PTO ends up harder than the treated Li 6 PS 5 Cl, thus forming the favorable “active material‐in‐electrolyte” microstructure. Cell performance improved as a result, including a 91% increase in material utilization compared with electrodes with unfavorable microstructures, as well as enhanced discharge−charge rates and cycling stability. Such a hardness manipulation strategy has broad applications in solid‐state devices and energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助shdhdu采纳,获得10
2秒前
2秒前
小草莓完成签到,获得积分20
2秒前
传奇3应助梦想or现实采纳,获得10
2秒前
JS姜硕完成签到,获得积分20
3秒前
Aurora完成签到,获得积分10
3秒前
852应助jerry1213采纳,获得10
5秒前
6秒前
天真的皓轩完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
JS姜硕发布了新的文献求助10
8秒前
8秒前
褚香旋发布了新的文献求助10
9秒前
烟花应助听话当小当采纳,获得10
10秒前
沉默的谷秋完成签到,获得积分10
11秒前
DingYL发布了新的文献求助10
11秒前
12秒前
13秒前
kyJYbs发布了新的文献求助10
14秒前
mmol发布了新的文献求助10
16秒前
zhangxr发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
且从容完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
田様应助bioglia采纳,获得10
19秒前
JamesPei应助年轻的藏今采纳,获得10
20秒前
v1008完成签到,获得积分10
20秒前
Rigel发布了新的文献求助10
21秒前
胡萝卜的外套完成签到,获得积分10
21秒前
jessica完成签到,获得积分10
21秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542