Comparative Analysis of Machine Learning Models and Explainable Artificial Intelligence for Predicting Wastewater Treatment Plant Variables

人工智能 机器学习 计算机科学
作者
Fuad Bin Nasir,Jin Li
出处
期刊:Advances in environmental and engineering research [LIDSEN Publishing Inc]
卷期号:05 (04): 1-23
标识
DOI:10.21926/aeer.2404020
摘要

Increasing urban wastewater and rigorous discharge regulations pose significant challenges for wastewater treatment plants (WWTP) to meet regulatory compliance while minimizing operational costs. This study explores the application of several machine learning (ML) models specifically, Artificial Neural Networks (ANN), Gradient Boosting Machines (GBM), Random Forests (RF), eXtreme Gradient Boosting (XGBoost), and hybrid RF-GBM models in predicting important WWTP variables such as Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), Ammonia (NH₃), and Phosphorus (P). Several feature selection (FS) methods were employed to identify the most influential WWTP variables. To enhance ML models’ interpretability and to understand the impact of variables on prediction, two widely used explainable artificial intelligence (XAI) methods-Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) were investigated in the study. Results derived from FS and XAI methods were compared to explore their reliability. The ML model performance results revealed that ANN, GBM, XGBoost, and RF-GBM have great potential for variable prediction with low error rates and strong correlation coefficients such as R<sup>2</sup> value of 1 on the training set and 0.98 on the test set. The study also revealed that XAI methods identify common influential variables in each model’s prediction. This is a novel attempt to get an overview of both LIME and SHAP explanations on ML models for a WWTP variable prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萌dreaming完成签到,获得积分10
1秒前
Jtiger完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
宗友绿发布了新的文献求助10
4秒前
4秒前
祁风发布了新的文献求助10
5秒前
5秒前
5秒前
成就的雅青完成签到,获得积分10
5秒前
ly完成签到,获得积分10
6秒前
ding应助深情夏彤采纳,获得10
6秒前
HansStone完成签到,获得积分10
7秒前
7秒前
淡淡人英发布了新的文献求助10
8秒前
Lucides发布了新的文献求助10
8秒前
8秒前
chengzugen完成签到,获得积分20
9秒前
9秒前
aura发布了新的文献求助10
9秒前
nhocbinzuzu完成签到,获得积分20
10秒前
ly发布了新的文献求助10
10秒前
zyh完成签到,获得积分10
11秒前
科研的菜狗完成签到 ,获得积分10
11秒前
孙博士发布了新的文献求助10
12秒前
LiShin发布了新的文献求助10
12秒前
karma完成签到,获得积分10
12秒前
上官若男应助柯南采纳,获得10
13秒前
陶醉的开山完成签到,获得积分10
13秒前
香蕉觅云应助哈拉少采纳,获得10
14秒前
小太阳发布了新的文献求助10
15秒前
16秒前
17秒前
简简完成签到,获得积分10
18秒前
19秒前
21秒前
yipeng发布了新的文献求助10
21秒前
xiaohao完成签到 ,获得积分10
22秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253