A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors

聚ADP核糖聚合酶 可解释性 计算机科学 机器学习 人工智能 计算生物学 PARP抑制剂 试验装置 聚合酶 生物 DNA 生物化学
作者
Daiqiao Ai,Jingxing Wu,Hanxuan Cai,Duancheng Zhao,Yi‐Hao Chen,Jiajia Wei,Jianrong Xu,Jiquan Zhang,Ling Wang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:18
标识
DOI:10.3389/fphar.2022.971369
摘要

PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
折花浅笑完成签到,获得积分10
1秒前
英姑应助王宇采纳,获得10
2秒前
程佳慧完成签到 ,获得积分10
4秒前
9秒前
9秒前
13秒前
慕青应助昂叔的头发丝儿采纳,获得10
14秒前
Duke发布了新的文献求助10
15秒前
旦复旦兮完成签到,获得积分10
18秒前
20秒前
Owen应助迷人的冷亦采纳,获得10
22秒前
沉静从阳完成签到 ,获得积分10
22秒前
25秒前
王宇完成签到,获得积分20
26秒前
爆米花应助潺潺流水采纳,获得10
26秒前
wanci应助小巧的凌兰采纳,获得10
27秒前
kd1412完成签到 ,获得积分10
27秒前
30秒前
研友_ZbMNPn完成签到,获得积分10
31秒前
huy完成签到,获得积分10
31秒前
大模型应助虚幻之桃采纳,获得10
33秒前
ttll完成签到,获得积分10
34秒前
王宇发布了新的文献求助10
36秒前
40秒前
小俊完成签到,获得积分10
40秒前
khurram发布了新的文献求助10
40秒前
41秒前
yfy完成签到 ,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
44秒前
T_T发布了新的文献求助20
46秒前
46秒前
ChinaNiu应助ccl采纳,获得50
47秒前
英俊的铭应助碗碗采纳,获得10
50秒前
wyh295352318发布了新的文献求助10
51秒前
无花果应助王宇采纳,获得10
56秒前
huangqian完成签到,获得积分10
57秒前
SciGPT应助青原采纳,获得10
59秒前
tamo完成签到,获得积分10
1分钟前
kchrisuzad完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372594
求助须知:如何正确求助?哪些是违规求助? 2990308
关于积分的说明 8739817
捐赠科研通 2673792
什么是DOI,文献DOI怎么找? 1464644
科研通“疑难数据库(出版商)”最低求助积分说明 677641
邀请新用户注册赠送积分活动 669050