Cascaded Attention: Adaptive and Gated Graph Attention Network for Multiagent Reinforcement Learning

计算机科学 注意力网络 强化学习 图形 多样性(控制论) 人工智能 简单(哲学) 多智能体系统 机器学习 理论计算机科学 分布式计算 认识论 哲学
作者
Shuhan Qi,Xinhao Huang,Peixi Peng,Xuzhong Huang,Jiajia Zhang,Xuan Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3769-3779 被引量:6
标识
DOI:10.1109/tnnls.2022.3197918
摘要

Modeling the interactive relationships of agents is critical to improving the collaborative capability of a multiagent system. Some methods model these by predefined rules. However, due to the nonstationary problem, the interactive relationship changes over time and cannot be well captured by rules. Other methods adopt a simple mechanism such as an attention network to select the neighbors the current agent should collaborate with. However, in large-scale multiagent systems, collaborative relationships are too complicated to be described by a simple attention network. We propose an adaptive and gated graph attention network (AGGAT), which models the interactive relationships between agents in a cascaded manner. In the AGGAT, we first propose a graph-based hard attention network that roughly filters irrelevant agents. Then, normal soft attention is adopted to decide the importance of each neighbor. Finally, gated attention further refines the collaborative relationship of agents. By using cascaded attention, the collaborative relationship of agents is precisely learned in a coarse-to-fine style. Extensive experiments are conducted on a variety of cooperative tasks. The results indicate that our proposed method outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃鳕贝的小熊维尼完成签到,获得积分10
1秒前
1秒前
雪雪儿发布了新的文献求助10
3秒前
fan完成签到,获得积分20
4秒前
vanHaren发布了新的文献求助10
4秒前
WWF完成签到,获得积分20
4秒前
叶远望完成签到,获得积分10
5秒前
bob完成签到,获得积分10
6秒前
不是一个名字完成签到,获得积分10
7秒前
9秒前
情怀应助wuyd90采纳,获得10
10秒前
zplease完成签到,获得积分10
11秒前
11秒前
铁汁完成签到,获得积分10
13秒前
13秒前
默默的凡梅完成签到,获得积分10
14秒前
嘻嘻完成签到,获得积分10
14秒前
温婉的凝芙完成签到,获得积分10
14秒前
14秒前
愉快问枫发布了新的文献求助10
16秒前
祯果粒发布了新的文献求助10
16秒前
17秒前
L_完成签到,获得积分10
17秒前
友好真发布了新的文献求助10
17秒前
17秒前
18秒前
文静沛萍完成签到,获得积分10
19秒前
欢呼煎蛋发布了新的文献求助10
19秒前
4所得税d发布了新的文献求助10
23秒前
刘艳林完成签到,获得积分10
24秒前
战国瞳完成签到,获得积分10
25秒前
25秒前
26秒前
欢呼煎蛋完成签到,获得积分10
27秒前
29秒前
29秒前
maggiexjl完成签到,获得积分10
29秒前
三木足球完成签到,获得积分10
29秒前
871624521发布了新的文献求助10
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341