Cascaded Attention: Adaptive and Gated Graph Attention Network for Multiagent Reinforcement Learning

计算机科学 注意力网络 强化学习 图形 多样性(控制论) 人工智能 简单(哲学) 多智能体系统 机器学习 理论计算机科学 分布式计算 认识论 哲学
作者
Shuhan Qi,Xinhao Huang,Peixi Peng,Xuzhong Huang,Jiajia Zhang,Xuan Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tnnls.2022.3197918
摘要

Modeling the interactive relationships of agents is critical to improving the collaborative capability of a multiagent system. Some methods model these by predefined rules. However, due to the nonstationary problem, the interactive relationship changes over time and cannot be well captured by rules. Other methods adopt a simple mechanism such as an attention network to select the neighbors the current agent should collaborate with. However, in large-scale multiagent systems, collaborative relationships are too complicated to be described by a simple attention network. We propose an adaptive and gated graph attention network (AGGAT), which models the interactive relationships between agents in a cascaded manner. In the AGGAT, we first propose a graph-based hard attention network that roughly filters irrelevant agents. Then, normal soft attention is adopted to decide the importance of each neighbor. Finally, gated attention further refines the collaborative relationship of agents. By using cascaded attention, the collaborative relationship of agents is precisely learned in a coarse-to-fine style. Extensive experiments are conducted on a variety of cooperative tasks. The results indicate that our proposed method outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
刚刚
orixero应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
吃鱼硕发布了新的文献求助10
刚刚
星星又累完成签到,获得积分10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
咕噜发布了新的文献求助10
1秒前
阿乔发布了新的文献求助10
2秒前
YangNNNN完成签到,获得积分10
2秒前
默默的灯泡完成签到 ,获得积分10
2秒前
祝新竹发布了新的文献求助10
2秒前
2秒前
2秒前
呼呼兔完成签到 ,获得积分10
2秒前
卞绍奇完成签到,获得积分10
3秒前
星辰大海应助QiYi采纳,获得10
3秒前
3秒前
TAN发布了新的文献求助10
3秒前
3秒前
Bottle完成签到,获得积分10
4秒前
4秒前
诚心的若南完成签到,获得积分10
4秒前
点点完成签到,获得积分10
4秒前
4秒前
LHTTT完成签到,获得积分10
5秒前
zz完成签到 ,获得积分10
5秒前
5秒前
桐桐应助易烊千玺采纳,获得10
5秒前
6秒前
ll发布了新的文献求助30
6秒前
LYegoist完成签到,获得积分10
7秒前
Kane发布了新的文献求助10
7秒前
爆米花应助无辜的冬寒采纳,获得10
7秒前
Rocky完成签到 ,获得积分10
7秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384