亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cascaded Attention: Adaptive and Gated Graph Attention Network for Multiagent Reinforcement Learning

计算机科学 注意力网络 强化学习 图形 多样性(控制论) 人工智能 简单(哲学) 多智能体系统 机器学习 理论计算机科学 分布式计算 认识论 哲学
作者
Shuhan Qi,Xinhao Huang,Peixi Peng,Xuzhong Huang,Jiajia Zhang,Xuan Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3769-3779 被引量:6
标识
DOI:10.1109/tnnls.2022.3197918
摘要

Modeling the interactive relationships of agents is critical to improving the collaborative capability of a multiagent system. Some methods model these by predefined rules. However, due to the nonstationary problem, the interactive relationship changes over time and cannot be well captured by rules. Other methods adopt a simple mechanism such as an attention network to select the neighbors the current agent should collaborate with. However, in large-scale multiagent systems, collaborative relationships are too complicated to be described by a simple attention network. We propose an adaptive and gated graph attention network (AGGAT), which models the interactive relationships between agents in a cascaded manner. In the AGGAT, we first propose a graph-based hard attention network that roughly filters irrelevant agents. Then, normal soft attention is adopted to decide the importance of each neighbor. Finally, gated attention further refines the collaborative relationship of agents. By using cascaded attention, the collaborative relationship of agents is precisely learned in a coarse-to-fine style. Extensive experiments are conducted on a variety of cooperative tasks. The results indicate that our proposed method outperforms state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
浮游应助Jason采纳,获得10
2秒前
计划完成签到,获得积分10
5秒前
8秒前
10秒前
12秒前
想上985完成签到,获得积分10
12秒前
talent发布了新的文献求助10
16秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
shhoing应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助笑点低的稀采纳,获得10
26秒前
大方元风发布了新的文献求助10
28秒前
30秒前
HCCha完成签到,获得积分10
33秒前
Tingshan发布了新的文献求助10
35秒前
nah完成签到 ,获得积分10
37秒前
喜悦的小土豆完成签到 ,获得积分10
38秒前
璨澄完成签到 ,获得积分0
38秒前
科研大王完成签到,获得积分10
39秒前
42秒前
44秒前
胡江完成签到 ,获得积分10
47秒前
麻薯完成签到,获得积分10
48秒前
科研启动完成签到,获得积分10
48秒前
49秒前
49秒前
zizi完成签到 ,获得积分10
50秒前
7chill完成签到,获得积分10
53秒前
名子劝学完成签到 ,获得积分10
55秒前
云漓完成签到 ,获得积分10
58秒前
科研通AI6应助talent采纳,获得10
1分钟前
甜兰儿完成签到,获得积分10
1分钟前
酚醛树脂发布了新的文献求助10
1分钟前
1分钟前
皮皮完成签到 ,获得积分20
1分钟前
羽毛发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374