Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification

阴极 材料科学 工作职能 电解质 氧化物 化学工程 容量损失 电极 复合材料 图层(电子) 化学 冶金 工程类 物理化学
作者
Ying‐de Huang,Han‐xin Wei,Peiyao Li,Yu‐hong Luo,Qing Wen,Ding-Hao Le,Zhenjiang He,Haiyan Wang,Yougen Tang,Cheng Yan,Jing Mao,Kehua Dai,Xiahui Zhang,Junchao Zheng
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:75: 301-309 被引量:59
标识
DOI:10.1016/j.jechem.2022.08.010
摘要

High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density. However, this material still suffers from structural degradation during cycling and especially the severe interfacial reactions at elevated temperatures that exacerbate irreversible capacity loss. Here, a simple strategy was used to construct a dual-function Li1.5Al0.5Ge1.5P3O12 (LAGP) protective layer on the surface of the high-nickel single-crystal (SC) cathode material, leading to [email protected] material. The strong Al–O bonding effectively inhibits the release of lattice oxygen (O) at elevated temperatures, which is supported by the positive formation energy of O vacancy from first-principal calculations. Besides, theoretical calculations demonstrate that the appropriate amount of Al doping accelerates the electron and Li+ transport, and thus reduces the kinetic barriers. In addition, the LAGP protective layer alleviates the stress accumulation during cycling and effectively reduces the erosion of materials from the electrolyte decomposition at elevated temperatures. The obtained [email protected] cathode material demonstrates much enhanced cycling stability even at high voltage (4.6 V) and elevated temperature (55 °C), with a high capacity retention of 91.3% after 100 cycles. This work reports a simple dual-function coating strategy that simultaneously stabilizes the structure and interface of the single-crystal cathode material, which can be applied to design other cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦恩俊完成签到,获得积分10
刚刚
CCF完成签到,获得积分10
刚刚
小巧的水杯关注了科研通微信公众号
刚刚
爆米花应助自然的亦巧采纳,获得10
1秒前
yang完成签到 ,获得积分10
1秒前
splemeth发布了新的文献求助10
1秒前
2秒前
Yolen LI完成签到,获得积分0
2秒前
2秒前
自然的茉莉完成签到,获得积分10
3秒前
在水一方应助满意的尔曼采纳,获得10
3秒前
五月初夏完成签到,获得积分10
4秒前
4秒前
北辰完成签到,获得积分20
4秒前
4秒前
111发布了新的文献求助10
4秒前
5秒前
5秒前
小巷人发布了新的文献求助10
5秒前
6秒前
大模型应助十沐乐安采纳,获得10
6秒前
6秒前
6秒前
张杰发布了新的文献求助10
6秒前
Never完成签到,获得积分10
7秒前
曾丹么么哒完成签到,获得积分10
7秒前
7秒前
无花果应助白云苍狗采纳,获得10
7秒前
8秒前
不安的丹亦完成签到,获得积分10
8秒前
小聂发布了新的文献求助10
9秒前
9秒前
11发布了新的文献求助10
9秒前
9秒前
Bo完成签到,获得积分10
9秒前
Atticus完成签到,获得积分10
10秒前
10秒前
拼搏凌青发布了新的文献求助10
10秒前
丫丫发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251565
求助须知:如何正确求助?哪些是违规求助? 4415674
关于积分的说明 13746733
捐赠科研通 4287400
什么是DOI,文献DOI怎么找? 2352416
邀请新用户注册赠送积分活动 1349253
关于科研通互助平台的介绍 1308750