Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification

阴极 材料科学 工作职能 电解质 氧化物 化学工程 容量损失 电极 复合材料 图层(电子) 化学 冶金 工程类 物理化学
作者
Ying‐de Huang,Han‐xin Wei,Peiyao Li,Yu‐hong Luo,Qing Wen,Ding-Hao Le,Zhenjiang He,Haiyan Wang,Yougen Tang,Cheng Yan,Jing Mao,Kehua Dai,Xiahui Zhang,Junchao Zheng
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:75: 301-309 被引量:48
标识
DOI:10.1016/j.jechem.2022.08.010
摘要

High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density. However, this material still suffers from structural degradation during cycling and especially the severe interfacial reactions at elevated temperatures that exacerbate irreversible capacity loss. Here, a simple strategy was used to construct a dual-function Li1.5Al0.5Ge1.5P3O12 (LAGP) protective layer on the surface of the high-nickel single-crystal (SC) cathode material, leading to [email protected] material. The strong Al–O bonding effectively inhibits the release of lattice oxygen (O) at elevated temperatures, which is supported by the positive formation energy of O vacancy from first-principal calculations. Besides, theoretical calculations demonstrate that the appropriate amount of Al doping accelerates the electron and Li+ transport, and thus reduces the kinetic barriers. In addition, the LAGP protective layer alleviates the stress accumulation during cycling and effectively reduces the erosion of materials from the electrolyte decomposition at elevated temperatures. The obtained [email protected] cathode material demonstrates much enhanced cycling stability even at high voltage (4.6 V) and elevated temperature (55 °C), with a high capacity retention of 91.3% after 100 cycles. This work reports a simple dual-function coating strategy that simultaneously stabilizes the structure and interface of the single-crystal cathode material, which can be applied to design other cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pyt777完成签到,获得积分10
2秒前
lf发布了新的文献求助10
2秒前
buzhinianjiu完成签到,获得积分10
2秒前
5秒前
tina3058发布了新的文献求助10
5秒前
callmefather发布了新的文献求助10
5秒前
思源应助rrrrrr采纳,获得10
6秒前
打打应助笨笨凡松采纳,获得10
6秒前
GXNU完成签到,获得积分10
6秒前
思源应助sby19采纳,获得10
7秒前
dlfg完成签到,获得积分10
7秒前
所所应助哒哒猪采纳,获得10
7秒前
支支完成签到,获得积分10
8秒前
陈富贵完成签到 ,获得积分10
9秒前
bkagyin应助zjk采纳,获得10
10秒前
11秒前
情怀应助joysa采纳,获得10
11秒前
SYLH应助Abi采纳,获得10
11秒前
13秒前
刘洋完成签到,获得积分10
14秒前
韶安萱发布了新的文献求助10
16秒前
16秒前
Metrix发布了新的文献求助10
16秒前
无花果应助Abi采纳,获得10
16秒前
16秒前
科研通AI5应助brazenness采纳,获得10
17秒前
18秒前
以默发布了新的文献求助10
18秒前
VDC应助经验丰富的菜狗采纳,获得30
18秒前
tmxx发布了新的文献求助10
19秒前
orixero应助DT采纳,获得10
19秒前
21秒前
小星云发布了新的文献求助10
21秒前
冷傲机器猫完成签到,获得积分10
21秒前
Marvin42完成签到,获得积分10
22秒前
22秒前
独钓寒江雪完成签到 ,获得积分10
22秒前
奶龙淦贝利亚完成签到,获得积分10
23秒前
李健的小迷弟应助阳仔采纳,获得10
23秒前
星星月完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679