亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Phase separation in viral infections

生物 重编程 病毒复制 功能(生物学) 细胞器 原细胞 计算生物学 病毒学 细胞生物学 细胞 病毒 遗传学
作者
Haohua Li,Christina Ernst,Marta Kolonko,Beata Greb‐Markiewicz,Jackie Man,Vincent Parissi,Wai‐Lung Ng
出处
期刊:Trends in Microbiology [Elsevier BV]
卷期号:30 (12): 1217-1231 被引量:57
标识
DOI:10.1016/j.tim.2022.06.005
摘要

Liquid–liquid phase separation (LLPS) leads to the spontaneous formation of membraneless organelles (MLOs), which organize the cytoplasm and nucleus into specialized subregions that accelerate biochemical reactions. Many viruses exploit LLPS to facilitate their replications and to evade antiviral immune responses. In-depth understanding of the physical and biochemical basis underlying LLPS in viral infections might guide the development of a novel class of antivirals. Viruses rely on the reprogramming of cellular processes to enable efficient viral replication; this often requires subcompartmentalization within the host cell. Liquid–liquid phase separation (LLPS) has emerged as a fundamental principle to organize and subdivide cellular processes, and plays an important role in viral life cycles. Despite substantial advances in the field, elucidating the exact organization and function of these organelles remains a major challenge. In this review, we summarize the biochemical basis of condensate formation, the role of LLPS during viral infection, and interplay of LLPS with innate immune responses. Finally, we discuss possible strategies and molecules to modulate LLPS during viral infections. Viruses rely on the reprogramming of cellular processes to enable efficient viral replication; this often requires subcompartmentalization within the host cell. Liquid–liquid phase separation (LLPS) has emerged as a fundamental principle to organize and subdivide cellular processes, and plays an important role in viral life cycles. Despite substantial advances in the field, elucidating the exact organization and function of these organelles remains a major challenge. In this review, we summarize the biochemical basis of condensate formation, the role of LLPS during viral infection, and interplay of LLPS with innate immune responses. Finally, we discuss possible strategies and molecules to modulate LLPS during viral infections. a large family of protein chaperones that are activated in response to stressful stimuli in the cellular environment. nuclear or cytoplasmic membraneless structures composed of multivalent viral proteins combined with the host factors and/or oligonucleotides. IBs are typically built to execute specific replication and assembly functions. highly flexible polypeptide chains that do not adopt well-defined structures in solution yet are fully functional. IDPs can adopt different structures, allowing them to interact with several targets; this capability seems to be advantageous in molecular recognition processes. The IDP functionality may also depend on the transition from a disordered to an ordered structure upon binding to their target. polypeptide segments without precise or well-defined structures. IDRs exist as highly dynamic, disordered conformers that can adopt different structures, which is crucial for their functionality. cellular compartments and condensates formed via phase separation. MLOs organize the cytoplasm and nucleus into specialized subregions, enabling synchronized – and even mutually exclusive – biochemical reactions to take place. a physical process by which a solution of macromolecules, such as proteins or nucleic acids, spontaneously separates into two phases, leading to the formation of MLOs. The propensity of this process is influenced by a wide range of factors, such as the concentration of macromolecule(s), pH, temperature, ionic strength, and the presence of metal ions and small molecules. proteins that interact directly with single-stranded or double-stranded RNA. an MLO assembled via phase separation in response to environmental stress such as heat or cold shock, oxidative and osmotic stress, UV radiation, and viral infections. cellular compartments of altered molecular composition with regard to the cytoplasmic environment, enabling efficient viral translation, replication, particle assembly, and immune evasion. Viral factories depend on the co-option, as well as the exclusion, of specific cellular components. They vary widely among viruses in their composition, shape, and dynamics, ranging from double-membrane vesicles, through spherules, to membraneless organelles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eritinn完成签到,获得积分10
11秒前
ljl86400完成签到,获得积分10
11秒前
11秒前
Jasper应助Heng采纳,获得10
14秒前
21秒前
26秒前
30秒前
Nakjeong完成签到 ,获得积分10
31秒前
xuezha发布了新的文献求助10
36秒前
郭燥发布了新的文献求助10
38秒前
40秒前
爱科研发布了新的文献求助10
43秒前
生信精准科研完成签到,获得积分10
53秒前
呜呜吴完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
孤独的大灰狼完成签到 ,获得积分10
1分钟前
feifei发布了新的文献求助10
1分钟前
1分钟前
yellow完成签到 ,获得积分10
1分钟前
bkagyin应助流萤采纳,获得30
1分钟前
爱科研完成签到,获得积分10
1分钟前
jinghong完成签到 ,获得积分10
1分钟前
orixero应助故意的茗采纳,获得10
1分钟前
学谦完成签到 ,获得积分10
2分钟前
2分钟前
feifei发布了新的文献求助10
2分钟前
令宏发布了新的文献求助50
2分钟前
我是老大应助彩色德天采纳,获得30
2分钟前
我的文献呢应助郑雅茵采纳,获得30
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
芳华正茂完成签到 ,获得积分10
2分钟前
ldgsd完成签到 ,获得积分10
2分钟前
HuanChen完成签到 ,获得积分10
2分钟前
郑雅茵给郑雅茵的求助进行了留言
2分钟前
2分钟前
彩色德天完成签到,获得积分10
2分钟前
领导范儿应助陈陈陈采纳,获得10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214